toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Arnau Baro; Pau Riba; Jorge Calvo-Zaragoza; Alicia Fornes edit  url
openurl 
  Title From Optical Music Recognition to Handwritten Music Recognition: a Baseline Type Journal Article
  Year 2019 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 123 Issue Pages 1-8  
  Keywords  
  Abstract Optical Music Recognition (OMR) is the branch of document image analysis that aims to convert images of musical scores into a computer-readable format. Despite decades of research, the recognition of handwritten music scores, concretely the Western notation, is still an open problem, and the few existing works only focus on a specific stage of OMR. In this work, we propose a full Handwritten Music Recognition (HMR) system based on Convolutional Recurrent Neural Networks, data augmentation and transfer learning, that can serve as a baseline for the research community.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.097; 601.302; 601.330; 600.140; 600.121 Approved no  
  Call Number (up) Admin @ si @ BRC2019 Serial 3275  
Permanent link to this record
 

 
Author Arnau Baro; Pau Riba; Alicia Fornes edit   pdf
doi  openurl
  Title Towards the recognition of compound music notes in handwritten music scores Type Conference Article
  Year 2016 Publication 15th international conference on Frontiers in Handwriting Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract The recognition of handwritten music scores still remains an open problem. The existing approaches can only deal with very simple handwritten scores mainly because of the variability in the handwriting style and the variability in the composition of groups of music notes (i.e. compound music notes). In this work we focus on this second problem and propose a method based on perceptual grouping for the recognition of compound music notes. Our method has been tested using several handwritten music scores of the CVC-MUSCIMA database and compared with a commercial Optical Music Recognition (OMR) software. Given that our method is learning-free, the obtained results are promising.  
  Address Shenzhen; China; October 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2167-6445 ISBN Medium  
  Area Expedition Conference ICFHR  
  Notes DAG; 600.097 Approved no  
  Call Number (up) Admin @ si @ BRF2016 Serial 2903  
Permanent link to this record
 

 
Author Arnau Baro; Pau Riba; Alicia Fornes edit   pdf
openurl 
  Title A Starting Point for Handwritten Music Recognition Type Conference Article
  Year 2018 Publication 1st International Workshop on Reading Music Systems Abbreviated Journal  
  Volume Issue Pages 5-6  
  Keywords Optical Music Recognition; Long Short-Term Memory; Convolutional Neural Networks; MUSCIMA++; CVCMUSCIMA  
  Abstract In the last years, the interest in Optical Music Recognition (OMR) has reawakened, especially since the appearance of deep learning. However, there are very few works addressing handwritten scores. In this work we describe a full OMR pipeline for handwritten music scores by using Convolutional and Recurrent Neural Networks that could serve as a baseline for the research community.  
  Address Paris; France; September 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WORMS  
  Notes DAG; 600.097; 601.302; 601.330; 600.121 Approved no  
  Call Number (up) Admin @ si @ BRF2018 Serial 3223  
Permanent link to this record
 

 
Author Asma Bensalah; Pau Riba; Alicia Fornes; Josep Llados edit   pdf
openurl 
  Title Shoot less and Sketch more: An Efficient Sketch Classification via Joining Graph Neural Networks and Few-shot Learning Type Conference Article
  Year 2019 Publication 13th IAPR International Workshop on Graphics Recognition Abbreviated Journal  
  Volume Issue Pages 80-85  
  Keywords Sketch classification; Convolutional Neural Network; Graph Neural Network; Few-shot learning  
  Abstract With the emergence of the touchpad devices and drawing tablets, a new era of sketching started afresh. However, the recognition of sketches is still a tough task due to the variability of the drawing styles. Moreover, in some application scenarios there is few labelled data available for training,
which imposes a limitation for deep learning architectures. In addition, in many cases there is a need to generate models able to adapt to new classes. In order to cope with these limitations, we propose a method based on few-shot learning and graph neural networks for classifying sketches aiming for an efficient neural model. We test our approach with several databases of
sketches, showing promising results.
 
  Address Sydney; Australia; September 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference GREC  
  Notes DAG; 600.140; 601.302; 600.121 Approved no  
  Call Number (up) Admin @ si @ BRF2019 Serial 3354  
Permanent link to this record
 

 
Author Arnau Baro; Pau Riba; Alicia Fornes edit  doi
openurl 
  Title Musigraph: Optical Music Recognition Through Object Detection and Graph Neural Network Type Conference Article
  Year 2022 Publication Frontiers in Handwriting Recognition. International Conference on Frontiers in Handwriting Recognition (ICFHR2022) Abbreviated Journal  
  Volume 13639 Issue Pages 171-184  
  Keywords Object detection; Optical music recognition; Graph neural network  
  Abstract During the last decades, the performance of optical music recognition has been increasingly improving. However, and despite the 2-dimensional nature of music notation (e.g. notes have rhythm and pitch), most works treat musical scores as a sequence of symbols in one dimension, which make their recognition still a challenge. Thus, in this work we explore the use of graph neural networks for musical score recognition. First, because graphs are suited for n-dimensional representations, and second, because the combination of graphs with deep learning has shown a great performance in similar applications. Our methodology consists of: First, we will detect each isolated/atomic symbols (those that can not be decomposed in more graphical primitives) and the primitives that form a musical symbol. Then, we will build the graph taking as root node the notehead and as leaves those primitives or symbols that modify the note’s rhythm (stem, beam, flag) or pitch (flat, sharp, natural). Finally, the graph is translated into a human-readable character sequence for a final transcription and evaluation. Our method has been tested on more than five thousand measures, showing promising results.  
  Address December 04 – 07, 2022; Hyderabad, India  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICFHR  
  Notes DAG; 600.162; 600.140; 602.230 Approved no  
  Call Number (up) Admin @ si @ BRF2022b Serial 3740  
Permanent link to this record
 

 
Author R. Bertrand; Oriol Ramos Terrades; P. Gomez-Kramer; P. Franco; Jean-Marc Ogier edit  doi
openurl 
  Title A Conditional Random Field model for font forgery detection Type Conference Article
  Year 2015 Publication 13th International Conference on Document Analysis and Recognition ICDAR2015 Abbreviated Journal  
  Volume Issue Pages 576 - 580  
  Keywords  
  Abstract Nowadays, document forgery is becoming a real issue. A large amount of documents that contain critical information as payment slips, invoices or contracts, are constantly subject to fraudster manipulation because of the lack of security regarding this kind of document. Previously, a system to detect fraudulent documents based on its intrinsic features has been presented. It was especially designed to retrieve copy-move forgery and imperfection due to fraudster manipulation. However, when a set of characters is not present in the original document, copy-move forgery is not feasible. Hence, the fraudster will use a text toolbox to add or modify information in the document by imitating the font or he will cut and paste characters from another document where the font properties are similar. This often results in font type errors. Thus, a clue to detect document forgery consists of finding characters, words or sentences in a document with font properties different from their surroundings. To this end, we present in this paper an automatic forgery detection method based on document font features. Using the Conditional Random Field a measurement of probability that a character belongs to a specific font is made by comparing the character font features to a knowledge database. Then, the character is classified as a genuine or a fake one by comparing its probability to belong to a certain font type with those of the neighboring characters.  
  Address Nancy; France; August 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.077 Approved no  
  Call Number (up) Admin @ si @ BRG2015 Serial 2725  
Permanent link to this record
 

 
Author Albert Berenguel; Oriol Ramos Terrades; Josep Llados; Cristina Cañero edit  doi
openurl 
  Title Banknote counterfeit detection through background texture printing analysis Type Conference Article
  Year 2016 Publication 12th IAPR Workshop on Document Analysis Systems Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract This paper is focused on the detection of counterfeit photocopy banknotes. The main difficulty is to work on a real industrial scenario without any constraint about the acquisition device and with a single image. The main contributions of this paper are twofold: first the adaptation and performance evaluation of existing approaches to classify the genuine and photocopy banknotes using background texture printing analysis, which have not been applied into this context before. Second, a new dataset of Euro banknotes images acquired with several cameras under different luminance conditions to evaluate these methods. Experiments on the proposed algorithms show that mixing SIFT features and sparse coding dictionaries achieves quasi perfect classification using a linear SVM with the created dataset. Approaches using dictionaries to cover all possible texture variations have demonstrated to be robust and outperform the state-of-the-art methods using the proposed benchmark.  
  Address Rumania; May 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference DAS  
  Notes DAG; 600.061; 601.269; 600.097 Approved no  
  Call Number (up) Admin @ si @ BRL2016 Serial 2950  
Permanent link to this record
 

 
Author Albert Berenguel; Oriol Ramos Terrades; Josep Llados; Cristina Cañero edit  doi
openurl 
  Title Evaluation of Texture Descriptors for Validation of Counterfeit Documents Type Conference Article
  Year 2017 Publication 14th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 1237-1242  
  Keywords  
  Abstract This paper describes an exhaustive comparative analysis and evaluation of different existing texture descriptor algorithms to differentiate between genuine and counterfeit documents. We include in our experiments different categories of algorithms and compare them in different scenarios with several counterfeit datasets, comprising banknotes and identity documents. Computational time in the extraction of each descriptor is important because the final objective is to use it in a real industrial scenario. HoG and CNN based descriptors stands out statistically over the rest in terms of the F1-score/time ratio performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2379-2140 ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.061; 601.269; 600.097; 600.121 Approved no  
  Call Number (up) Admin @ si @ BRL2017 Serial 3092  
Permanent link to this record
 

 
Author Albert Berenguel; Oriol Ramos Terrades; Josep Llados; Cristina Cañero edit   pdf
doi  openurl
  Title e-Counterfeit: a mobile-server platform for document counterfeit detection Type Conference Article
  Year 2017 Publication 14th IAPR International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract This paper presents a novel application to detect counterfeit identity documents forged by a scan-printing operation. Texture analysis approaches are proposed to extract validation features from security background that is usually printed in documents as IDs or banknotes. The main contribution of this work is the end-to-end mobile-server architecture, which provides a service for non-expert users and therefore can be used in several scenarios. The system also provides a crowdsourcing mode so labeled images can be gathered, generating databases for incremental training of the algorithms.  
  Address Kyoto; Japan; November 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.061; 600.097; 600.121 Approved no  
  Call Number (up) Admin @ si @ BRL2018 Serial 3084  
Permanent link to this record
 

 
Author Albert Berenguel; Oriol Ramos Terrades; Josep Llados; Cristina Cañero edit  url
doi  openurl
  Title Recurrent Comparator with attention models to detect counterfeit documents Type Conference Article
  Year 2019 Publication 15th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract This paper is focused on the detection of counterfeit documents via the recurrent comparison of the security textured background regions of two images. The main contributions are twofold: first we apply and adapt a recurrent comparator architecture with attention mechanism to the counterfeit detection task, which constructs a representation of the background regions by recurrently condition the next observation, learning the difference between genuine and counterfeit images through iterative glimpses. Second we propose a new counterfeit document dataset to ensure the generalization of the learned model towards the detection of the lack of resolution during the counterfeit manufacturing. The presented network, outperforms state-of-the-art classification approaches for counterfeit detection as demonstrated in the evaluation.  
  Address Sidney; Australia; September 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.140; 600.121; 601.269 Approved no  
  Call Number (up) Admin @ si @ BRL2019 Serial 3456  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: