|
Records |
Links |
|
Author  |
Anjan Dutta; Josep Llados; Umapada Pal |


|
|
Title |
Symbol Spotting in Line Drawings Through Graph Paths Hashing |
Type |
Conference Article |
|
Year |
2011 |
Publication |
11th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
982-986 |
|
|
Keywords |
|
|
|
Abstract |
In this paper we propose a symbol spotting technique through hashing the shape descriptors of graph paths (Hamiltonian paths). Complex graphical structures in line drawings can be efficiently represented by graphs, which ease the accurate localization of the model symbol. Graph paths are the factorized substructures of graphs which enable robust recognition even in the presence of noise and distortion. In our framework, the entire database of the graphical documents is indexed in hash tables by the locality sensitive hashing (LSH) of shape descriptors of the paths. The hashing data structure aims to execute an approximate k-NN search in a sub-linear time. The spotting method is formulated by a spatial voting scheme to the list of locations of the paths that are decided during the hash table lookup process. We perform detailed experiments with various dataset of line drawings and the results demonstrate the effectiveness and efficiency of the technique. |
|
|
Address |
Beijing, China |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1520-5363 |
ISBN |
978-1-4577-1350-7 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ DLP2011b |
Serial |
1791 |
|
Permanent link to this record |
|
|
|
|
Author  |
Anjan Dutta; Josep Llados; Umapada Pal |


|
|
Title |
Bag-of-GraphPaths Descriptors for Symbol Recognition and Spotting in Line Drawings |
Type |
Conference Article |
|
Year |
2011 |
Publication |
In proceedings of 9th IAPR Workshop on Graphic Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Graphical symbol recognition and spotting recently have become an important research activity. In this work we present a descriptor for symbols, especially for line drawings. The descriptor is based on the graph representation of graphical objects. We construct graphs from the vectorized information of the binarized images, where the critical points detected by the vectorization algorithm are considered as nodes and the lines joining them are considered as edges. Graph paths between two nodes in a graph are the finite sequences of nodes following the order from the starting to the final node. The occurrences of different graph paths in a given graph is an important feature, as they capture the geometrical and structural attributes of a graph. So the graph representing a symbol can efficiently be represent by the occurrences of its different paths. Their occurrences in a symbol can be obtained in terms of a histogram counting the number of some fixed prototype paths, we call the histogram as the Bag-of-GraphPaths (BOGP). These BOGP histograms are used as a descriptor to measure the distance among the symbols in vector space. We use the descriptor for three applications, they are: (1) classification of the graphical symbols, (2) spotting of the architectural symbols on floorplans, (3) classification of the historical handwritten words. |
|
|
Address |
Seoul, Korea |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Berlin Heidelberg |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0302-9743 |
ISBN |
978-3-642-36823-3 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
GREC |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ DLP2011c |
Serial |
1825 |
|
Permanent link to this record |
|
|
|
|
Author  |
Anjan Dutta; Josep Llados; Umapada Pal |


|
|
Title |
A symbol spotting approach in graphical documents by hashing serialized graphs |
Type |
Journal Article |
|
Year |
2013 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
46 |
Issue |
3 |
Pages |
752-768 |
|
|
Keywords |
Symbol spotting; Graphics recognition; Graph matching; Graph serialization; Graph factorization; Graph paths; Hashing |
|
|
Abstract |
In this paper we propose a symbol spotting technique in graphical documents. Graphs are used to represent the documents and a (sub)graph matching technique is used to detect the symbols in them. We propose a graph serialization to reduce the usual computational complexity of graph matching. Serialization of graphs is performed by computing acyclic graph paths between each pair of connected nodes. Graph paths are one-dimensional structures of graphs which are less expensive in terms of computation. At the same time they enable robust localization even in the presence of noise and distortion. Indexing in large graph databases involves a computational burden as well. We propose a graph factorization approach to tackle this problem. Factorization is intended to create a unified indexed structure over the database of graphical documents. Once graph paths are extracted, the entire database of graphical documents is indexed in hash tables by locality sensitive hashing (LSH) of shape descriptors of the paths. The hashing data structure aims to execute an approximate k-NN search in a sub-linear time. We have performed detailed experiments with various datasets of line drawings and compared our method with the state-of-the-art works. The results demonstrate the effectiveness and efficiency of our technique. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Elsevier |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0031-3203 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.042; 600.045; 605.203; 601.152 |
Approved |
no |
|
|
Call Number |
Admin @ si @ DLP2012 |
Serial |
2127 |
|
Permanent link to this record |
|
|
|
|
Author  |
Anjan Dutta; Pau Riba; Josep Llados; Alicia Fornes |

|
|
Title |
Pyramidal Stochastic Graphlet Embedding for Document Pattern Classification |
Type |
Conference Article |
|
Year |
2017 |
Publication |
14th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
33-38 |
|
|
Keywords |
graph embedding; hierarchical graph representation; graph clustering; stochastic graphlet embedding; graph classification |
|
|
Abstract |
Document pattern classification methods using graphs have received a lot of attention because of its robust representation paradigm and rich theoretical background. However, the way of preserving and the process for delineating documents with graphs introduce noise in the rendition of underlying data, which creates instability in the graph representation. To deal with such unreliability in representation, in this paper, we propose Pyramidal Stochastic Graphlet Embedding (PSGE).
Given a graph representing a document pattern, our method first computes a graph pyramid by successively reducing the base graph. Once the graph pyramid is computed, we apply Stochastic Graphlet Embedding (SGE) for each level of the pyramid and combine their embedded representation to obtain a global delineation of the original graph. The consideration of pyramid of graphs rather than just a base graph extends the representational power of the graph embedding, which reduces the instability caused due to noise and distortion. When plugged with support
vector machine, our proposed PSGE has outperformed the state-of-the-art results in recognition of handwritten words as well as graphical symbols |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.097; 601.302; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ DRL2017 |
Serial |
3054 |
|
Permanent link to this record |
|
|
|
|
Author  |
Anjan Dutta; Pau Riba; Josep Llados; Alicia Fornes |


|
|
Title |
Hierarchical Stochastic Graphlet Embedding for Graph-based Pattern Recognition |
Type |
Journal Article |
|
Year |
2020 |
Publication |
Neural Computing and Applications |
Abbreviated Journal |
NEUCOMA |
|
|
Volume |
32 |
Issue |
|
Pages |
11579–11596 |
|
|
Keywords |
|
|
|
Abstract |
Despite being very successful within the pattern recognition and machine learning community, graph-based methods are often unusable because of the lack of mathematical operations defined in graph domain. Graph embedding, which maps graphs to a vectorial space, has been proposed as a way to tackle these difficulties enabling the use of standard machine learning techniques. However, it is well known that graph embedding functions usually suffer from the loss of structural information. In this paper, we consider the hierarchical structure of a graph as a way to mitigate this loss of information. The hierarchical structure is constructed by topologically clustering the graph nodes and considering each cluster as a node in the upper hierarchical level. Once this hierarchical structure is constructed, we consider several configurations to define the mapping into a vector space given a classical graph embedding, in particular, we propose to make use of the stochastic graphlet embedding (SGE). Broadly speaking, SGE produces a distribution of uniformly sampled low-to-high-order graphlets as a way to embed graphs into the vector space. In what follows, the coarse-to-fine structure of a graph hierarchy and the statistics fetched by the SGE complements each other and includes important structural information with varied contexts. Altogether, these two techniques substantially cope with the usual information loss involved in graph embedding techniques, obtaining a more robust graph representation. This fact has been corroborated through a detailed experimental evaluation on various benchmark graph datasets, where we outperform the state-of-the-art methods. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.140; 600.121; 600.141 |
Approved |
no |
|
|
Call Number |
Admin @ si @ DRL2020 |
Serial |
3348 |
|
Permanent link to this record |
|
|
|
|
Author  |
Anjan Dutta; Umapada Pal; Alicia Fornes; Josep Llados |


|
|
Title |
An Efficient Staff Removal Technique from Printed Musical Documents |
Type |
Conference Article |
|
Year |
2010 |
Publication |
20th International Conference on Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1965–1968 |
|
|
Keywords |
|
|
|
Abstract |
Staff removal is an important preprocessing step of the Optical Music Recognition (OMR). The process aims to remove the stafflines from a musical document and retain only the musical symbols, later these symbols are used effectively to identify the music information. This paper proposes a simple but robust method to remove stafflines from printed musical scores. In the proposed methodology we have considered a staffline segment as a horizontal linkage of vertical black runs with uniform height. We have used the neighbouring properties of a staffline segment to validate it as a true segment. We have considered the dataset along with the deformations described in for evaluation purpose. From experimentation we have got encouraging results. |
|
|
Address |
Istanbul (Turkey) |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1051-4651 |
ISBN |
978-1-4244-7542-1 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICPR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ DPF2010 |
Serial |
1420 |
|
Permanent link to this record |
|
|
|
|
Author  |
Anjan Dutta; Umapada Pal; Josep Llados |

|
|
Title |
Compact Correlated Features for Writer Independent Signature Verification |
Type |
Conference Article |
|
Year |
2016 |
Publication |
23rd International Conference on Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
This paper considers the offline signature verification problem which is considered to be an important research line in the field of pattern recognition. In this work we propose hybrid features that consider the local features and their global statistics in the signature image. This has been done by creating a vocabulary of histogram of oriented gradients (HOGs). We impose weights on these local features based on the height information of water reservoirs obtained from the signature. Spatial information between local features are thought to play a vital role in considering the geometry of the signatures which distinguishes the originals from the forged ones. Nevertheless, learning a condensed set of higher order neighbouring features based on visual words, e.g., doublets and triplets, continues to be a challenging problem as possible combinations of visual words grow exponentially. To avoid this explosion of size, we create a code of local pairwise features which are represented as joint descriptors. Local features are paired based on the edges of a graph representation built upon the Delaunay triangulation. We reveal the advantage of combining both type of visual codebooks (order one and pairwise) for signature verification task. This is validated through an encouraging result on two benchmark datasets viz. CEDAR and GPDS300. |
|
|
Address |
Cancun; Mexico; December 2016 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICPR |
|
|
Notes |
DAG; 600.097 |
Approved |
no |
|
|
Call Number |
Admin @ si @ DPL2016 |
Serial |
2875 |
|
Permanent link to this record |
|
|
|
|
Author  |
Anjan Dutta; Zeynep Akata |


|
|
Title |
Semantically Tied Paired Cycle Consistency for Zero-Shot Sketch-based Image Retrieval |
Type |
Conference Article |
|
Year |
2019 |
Publication |
32nd IEEE Conference on Computer Vision and Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
5089-5098 |
|
|
Keywords |
|
|
|
Abstract |
Zero-shot sketch-based image retrieval (SBIR) is an emerging task in computer vision, allowing to retrieve natural images relevant to sketch queries that might not been seen in the training phase. Existing works either require aligned sketch-image pairs or inefficient memory fusion layer for mapping the visual information to a semantic space. In this work, we propose a semantically aligned paired cycle-consistent generative (SEM-PCYC) model for zero-shot SBIR, where each branch maps the visual information to a common semantic space via an adversarial training. Each of these branches maintains a cycle consistency that only requires supervision at category levels, and avoids the need of highly-priced aligned sketch-image pairs. A classification criteria on the generators' outputs ensures the visual to semantic space mapping to be discriminating. Furthermore, we propose to combine textual and hierarchical side information via a feature selection auto-encoder that selects discriminating side information within a same end-to-end model. Our results demonstrate a significant boost in zero-shot SBIR performance over the state-of-the-art on the challenging Sketchy and TU-Berlin datasets. |
|
|
Address |
Long beach; California; USA; June 2019 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CVPR |
|
|
Notes |
DAG; 600.141; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ DuA2019 |
Serial |
3268 |
|
Permanent link to this record |
|
|
|
|
Author  |
Anton Cervantes; Gemma Sanchez; Josep Llados; Agnes Borras; A. Rodriguez |

|
|
Title |
Biometric Recognition Based on Line Shape Descriptors |
Type |
Conference Article |
|
Year |
2005 |
Publication |
Sixth IAPR International Workshop on Graphics Recognition (GREC 2005) |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
335–344 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
Hong Kong (China) |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ CSL2005 |
Serial |
596 |
|
Permanent link to this record |
|
|
|
|
Author  |
Anton Cervantes; Gemma Sanchez; Josep Llados; Agnes Borras; Ana Rodriguez |


|
|
Title |
Biometric Recognition Based on Line Shape Descriptors |
Type |
Book Chapter |
|
Year |
2006 |
Publication |
Lecture Notes in Computer Science |
Abbreviated Journal |
|
|
|
Volume |
3926 |
Issue |
|
Pages |
346–357, |
|
|
Keywords |
|
|
|
Abstract |
Abstract. In this paper we propose biometric descriptors inspired by shape signatures traditionally used in graphics recognition approaches. In particular several methods based on line shape descriptors used to iden- tify newborns from the biometric information of the ears are developed. The process steps are the following: image acquisition, ear segmentation, ear normalization, feature extraction and identification. Several shape signatures are defined from contour images. These are formulated in terms of zoning and contour crossings descriptors. Experimental results are presented to demonstrate the effectiveness of the used techniques. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Link |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ CSL2006 |
Serial |
685 |
|
Permanent link to this record |