
A Product graph based method for dual subgraph
matching applied to symbol spotting

Anjan Dutta and Josep Lladós
Computer Vision Center

Universitat Autònoma de Barcelona
Barcelona, Spain

Email: {adutta,josep}@cvc.uab.es

Horst Bunke
Inst. of Comp. Sc. and Appl. Maths

University of Bern
Bern, Switzerland

Email: bunke@iam.unibe.ch

Umapada Pal
CVPR Unit

Indian Statistical Institute
Kolkata, India

Email: umapada@isical.ac.in

Abstract—Product graph has been shown to be an efficient
way for matching subgraphs. This paper reports the extension of
the product graph methodology for subgraph matching applied
to symbol spotting in graphical documents. This paper focuses
on the two major limitations of the previous version of product
graph: (1) Spurious nodes and edges in the graph representation
and (2) Inefficient node and edge attributes. To deal with noisy
information of vectorized graphical documents, we consider a
dual graph representation on the original graph representing
the graphical information and the product graph is computed
between the dual graphs of the query graphs and the input graph.
The dual graph with redundant edges is helpful for efficient and
tolerating encoding of the structural information of the graphical
documents. The adjacency matrix of the product graph locates
similar path information of two graphs and exponentiating the
adjacency matrix finds similar paths of greater lengths. Nodes
joining similar paths between two graphs are found by combining
different exponentials of adjacency matrices. An experimental
investigation reveals that the recall obtained by this approach is
quite encouraging.

I. INTRODUCTION

Product graph was introduced for computing the random
walk graph kernel for measuring the similarity between two
graphs. Recently it has been used for subgraph matching and
applied for spotting symbols on graphical documents [1]. In
this paper we propose an extension and improvement of the
product graph. Particularly, this work mainly focuses on the
two major limitations of the previous version of the method: (1)
Spurious nodes and edges that are generated during low level
image processing and (2) Erroneous node and edge attributes.
Of course, these problems are application and representation
dependent, but there is no doubt that the proposed solution
is more robust to distortion and noise, which will be further
useful for other applications and representations.

Graph representation of graphical documents involves some
low level image processing viz. binarization, skeletonization,
vectorization etc. For example, we use Qgar1 for vectorizing
the given binary images. This particular vectorization generates
critical points and connectivity information between them. For
representing a document with a graph, we consider the critical
points as the nodes and the lines joining them as the edges
(Fig. 1). The main problem in this kind of low level image
processing is the addition of noisy information. As an exam-
ple, Fig. 2(b) shows the graph representation of the symbol

1http://www.qgar.org

critical points
node

edge

Fig. 1: Each critical point detected by the vectorization tech-
nique is considered as a node and the straight lines joining
them are considered as the edges.

in Fig. 2(a) under the previously mentioned representation
scheme, whereas Fig. 2(c) shows the ideal graph representation
of the symbol. Here we can see an example of the introduction
of numerous spurious nodes near the junctions and corners.
Note that such a vectorization can also generate spurious
and discontinuous edges. This kind of structural noise always
creates problems for matching or comparing (sub)graphs. It
is true that with a different kind of graph representation it
may be possible to solve the problem more efficiently, but
dealing with this kind of distortions or noise at the graph level
is interesting for other domain also as it gives more robustness
in the matching method.

(a)

(b)
1 2

34

5

(c)

Fig. 2: Difference between a real graph representation and
an ideal graph representation: (a) an architectural symbol, (b)
the graph representation of the symbol in (a) after doing the
vectorization (note the spurious nodes near the corners and
junctions), (c) the ideal graph representation of the symbol in
(a), showing how the graph representation should be.

Product graphs have been introduced for computing ran-
dom walk graph kernels [2]. In our previous work, we in-
troduced product graph for subgraph matching and applied it

for spotting symbols in graphical documents [1]. Formally, a
symbol spotting method can naturally be formulated as a sub-
graph matching problem where a query symbol is considered
as model or query graph and the big target document can be
considered as a target or input graph. For more information
on symbol spotting methods based on graph representation
please refer to [3], where a literature review is given. Product
graph provides an efficient comparison technique between a
subgraph and a graph in terms of different substructures (in
this case paths) which allows the entire subgraph matching
process to be computed online. The product graph finds the
similar pair of nodes in the input graph with a pair of
nodes in the query graph and join them with an edge. In
this way the similar pair of nodes in these two graphs are
supposed to be connected with edges, this information can be
obtained from the adjacency matrix of the product graph. Now,
exponentiating the adjacency matrix provides the information
about similar pair of nodes which are connected with paths of
greater lengths. This was the main motivation of the work in
[1] but one of the problems was selecting efficient node and
edge attributes, especially when the graphs contain noise or
distortions like spurious nodes and edges, and the possibility
of discontinuous edges. To solve this problem in this paper
we introduce the dual graph DG with redundant edges of the
original graph G and consider the product graph of the dual
graphs. Here the dual graph DG of the original graph G is
a graph that has a vertex corresponding to each edge of G
and an edge joining two neighboring edges in G. In this work
we use a dual graph with redundant edge to cope with the
distortions and noise as explained in Section II. The variation
of dual graph provides us robust node and edge labels and
with this information the product graph is better suited for
subgraph matching applied to symbol spotting.

The rest of the paper is organized into three sections.
In Section II, we present the methodology to represent the
graphical documents with dual graph with redundant edges,
computing the node and edge labels and computing the product
graphs to spot the symbol on documents. Section III contains
a description of our current experimental results. After that, in
Section IV, we conclude the paper and discuss future directions
of work.

II. METHODOLOGY

Let GM = (VM , EM) be the graph representing the model
or query symbol and GI = (VI , EI) be the graph representing
the input or target image, where VM and VI are the set of
vertices, in this case the critical points, and EM and EI
are the set of edges connecting the critical points. Now the
subgraph matching is intended to find the different instances
or occurrences of GM in GI .

A. Dual graph

Let DGM = (DVM , DEM , αM , β
1
M , β

2
M) and DGI =

(DVI , DEI , αI , β
1
I , β

2
I) be the dual graphs on the original

graphs GM and GI respectively, where DVM = EM and
DVI = EI . Clearly, each node in DGM , DGI represents
an edge in GM , GI respectively. Here onwards, in this paper,
we will be denoting a node in the dual graph which joins two
nodes, say, vi and vj in the original graph as dvij . Now the

db

da

dc

Fig. 3: Details of adding redundant edges in the dual graph
considering only three nodes da, db and dc and n = 3:
The graphdist(da, db) = 2 and graphdist(db, dc) = 3, that
is why there exist edges (da, db) and (db, dc) but since
graphdist(da, dc) = 4, there is no edge (da, dc) (Note the
spurious nodes, edges near the corners and junctions in the
original graph that are plotted in green color).

edge sets of DGM and DGI are defined as follows:

DEI = {(dvij , dvkl) : dvij , dvkl ∈ DVI are adjacent}

DEM = {(duij , dukl) : duij , dukl ∈ DVM are adjacent}

We introduce the redundant edges to our dual graphs and
update DEI and DEM as follows (see Fig. 3):

DEI = DEI ∪ {(dvij ,dvkl) : graphdist(dvij , dvkl) ≤ n,
n ∈ N and dvij , dvkl ∈ DVI}

DEM = DEM ∪ {(duij ,dukl) : graphdist(duij , dukl) ≤ n,
n ∈ N and duij , dukl ∈ DVM}

Here graphdist(du, dv) stands for the minimum number edges
between the nodes du and dv in a dual graph. Now onwards
in this paper, by dual graph we mean the dual graph with
redundant edges.

αI : DVI → R7 is a node labeling function and is defined
as αI(dvij) = Hu moments invariants [4] of the acyclic graph
paths between vi and vj of length less than or equal to m ∈ N,
dvij ∈ DVI . Similarly, αM (duij) = is the same node labeling
function but defined in DGM . It is to be mentioned that for
each path, we get a vector of dimension seven and hence for
a node dv in a dual graph DG, we get a set of Hu moments
invariants, let us denote the set as Hu(dv). β1

I : DEI → R is
an edge labeling function and is defined as:

β1
I (dvij , dvkl) = min∠(dvij , dvkl), (dvij , dvkl) ∈ DEI .

12

34

5

67

8

9

10

1112

(a)
1 2

34

5

(b)

Fig. 4: Original graph and redundant dual graph representation
(with n = 3) of (a) a real symbol and (b) an ideal symbol. The
original graph is plotted with green color and its corresponding
dual graph with redundant edges is plotted with magenta color
(for details see Fig. 3).

β2
I : DEI → R is another edge labeling function and is defined

as:

β2
I (dvij , dvkl) =

mdist(dvij , dvkl)
max(length(dvij), length(dvkl))

,

(dvij , dvkl) ∈ DEI .

here mdist(dvij , dvkl) is the length of the line joining the
midpoint of the edges dvij and dvkl. β1

M and β2
M are defined

respectively as β1
I and β2

I but in DEM .

B. Product graph

Product graph GP = (VP , EP) of DGI and DGM relates
the input graph DGI and the model graph DGM with the node
and edge sets. The properties or the conditions are included in
the set definitions as follows:

VP ={(duij , dvij) : duij ∈ DVM , dvij ∈ DVI ,
αM (duij) ' αI(dvij),
β1
M (duij , dukl) ' β1

I (dvij , dvkl) and
β2
M (duij , dukl) ' β2

I (dvij , dvkl)}
and given the above set of nodes, the edge set EP will be:

EP ={((duij , dvij), (dukl, dvkl)) : (duij , dukl)
∈ DEM , (dvij , dvkl) ∈ DEI}

We use the parameters tα, tβ1
and tβ2

for measuring the
node and edge similarities as follows:

αM (duij) ' αI(dvij)⇔ |αM (duij)− αI(dvij)| ≤ tα
β1
M (duij , dukl) ' β1

I (dvij , dvkl)⇔
|β1
M (duij , dukl)− β1

I (dvij , dvkl)| ≤ tβ1

β2
M (duij , dukl) ' β2

I (dvij , dvkl)⇔
|β2
M (duij , dukl)− β2

I (dvij , dvkl)| ≤ tβ2

Here

|αM (duij)− αI(dvij)| =
∑

p1∈Hu(duij)

min
p2∈Hu(dvij)

d(p1, p2)

where d(., .) denotes the Euclidean distance.

From the above definition of product graph it is clear that
an edge in the product graph GP corresponds to the similar
connected node pairs in DGM and DGI . A simple synthetic
example is given in Fig. 5, where we have two different graphs
with discrete labels, one having node labels {a, b, c, d, e} and
the other with node labels {x, y, z}. For simplicity, let us
ignore the edge labels. Now, if we define the node label
similarities as a = x, b = y and c = z, we get the product
graph in Fig. 5. Here, each edge in the product graph denotes
a connected node pair.

a

b

d

c

e

x

y zX =

ax

bx

dx

cx

ex

ay

by

dy

cy

ey

az

bz

dz

cz

ez

Fig. 5: Demonstration of product graph computation with a
synthetic example.

C. Powers of adjacency matrix

If we multiply the adjacency matrix EP of the product
graph GP once with itself, we get the E2

P . The (i, j)th element
of E2

P denotes the number of paths of length two between
nodes i and j. Since matrix multiplication is associative we
can exponentiate EP as follows to get EnP :

EnP = EP .(EP)
n−1 = (EP)

n−1.EP

It is well known that the (i, j)th element of EnP always
denotes the number of paths of length n between i and j [2].
Since an edge in EP denotes the similarity between respective
connected node pairs, paths of longer length denote series of
similar nodes between DGM and DGI . This information is
helpful for getting nodes in DGI that are similar to nodes in
DGM and it can be utilized by integrating different weighted
exponentiations of EP into a new matrix A as follows:

A =

nl∑
i=1

εi × EiP , 0 < ε ≤ 1 s.t.
nl∑
i=1

εi = 1.

where nl is the maximum number of times the matrix EP is
being exponentiated.

These weights to different path lengths are inspired by
the traditional random walk graph kernel [2]. This way of
weightings reduces the influence of paths of greater lengths
because they often contains redundant information.

Now let us take an example of the matrix A as follows:

A =

(du1,dv1) ··· (duk,dvl) (duk+1,dvl+1) ··· (dum,dvn)
(du1,dv1) 0 ··· 0 0 ··· 0

...
...

. . .
...

...
. . .

...
(dul−1,dvk−1) 0 ··· 0 v1 ··· 0

(dul,dvk) 0 ··· v2 0 ··· 0
(dul+1,dvk+1) 0 ··· 0 v3 ··· 0

...
...

. . .
...

...
. . .

...
(dum,dvn) 0 ··· 0 0 ··· 0

TABLE I: Symbol-wise mean results with the Product graph methodology: the results under the ”New version” list the results
of the current method whereas the results under the ”Old version” list the previous results.

New version Old version
Symbol P R F AveP T (secs) P R F AveP T (secs)

armchair 47.86 99.69 64.67 47.61 14.05 15.34 78.13 25.65 16.21 0.56
bed 79.37 100.00 88.50 80.90 8.71 26.49 100.00 41.89 27.72 0.43

sofa2 32.23 100.00 48.75 34.60 7.62 15.23 45.00 22.76 15.43 0.39
table1 91.98 100.00 95.83 92.42 14.42 66.07 78.72 71.84 67.14 0.78
table3 7.82 100.00 14.51 7.22 97.63 3.57 87.50 6.86 3.87 1.26

where m < n and 1 < k, l ≤ m,n.

Let us further assume for simplicity that only v1,v2 and
v3s are the real numbers greater than zero and all the other
values in A are zero. As, for example, v1 6= 0, this particularly
signifies that dul−1 ' dvk−1 and dul+1 ' dvk+1 and also
(dul−1, dul+1) ' (dvk−1, dvk+1) according to the node and
edge similarity defined before. Now it can be noted that if
two nodes u, v in a graph G = (V,E) are connected with
more than one paths, they supposed to have more and more
random walks of different lengths which should be reflected
in the matrix A. Following the above explanation it is to
be mentioned that similar nodes in DGM and DGI should
be connected with different paths in the product graph GP .
So the non zero entry in the combined weighted matrix A
identifies the similar nodes in DGI with DGM and with this
the occurrences of the graph DGM can be found in DGI . The
similar pair of nodes in the redundant dual graphs should be
connected in the matrix A as above and the dissimilar pair
of nodes should get the zero entries, as in the exponentiation
of the adjacency matrix EP , the existence of solitary graph
edge must be diminished. The connected sub-component in the
matrix A (in this case component with non zero entries viz.
v1, v2 and v3) can be found by searching maximal subgroup
of entries that are mutually reachable (graphconncomp
function in the matlab). Each component is then regarded
as a single instance of the query graph in the input graph and
can be found according to the position of the second nodes of
the vertices of A.

III. EXPERIMENTAL RESULTS

Our experiments were conducted on the SESYD dataset2.
This dataset contains 10 different subsets and 16 query sym-
bols. Each of the subsets contains 100 synthetically generated
floorplans. All the floorplans in a subset are created from the
same floorplan template by putting different model symbols
in different places in random orientation and scale. In this
experiment we have only considered a subset of 100 images
(floorplans16-01). The symbol-wise quantitative results (preci-
sion (P), recall (R), f-measure (F), average precision (AveP)
and time (T)) for five symbols are shown in the Table I under
the column ”New version”. The recall values for all the five
symbols are very high, which proves that the method can find
most of the true occurrences in the images. The precision
values for some symbols are quite low though, and this is
because of the occurrence of false positives. Also in the same
table we have listed the results of the previous version of the
product graph in the ”Previous version” column, which shows
in the newer version we have achieved substantial improvement

2http://mathieu.delalandre.free.fr/projects/sesyd/symbols/floorplans.html

in terms of both precision and recall but the time complexity
is substantially high. This is because in the previous version
the node and edge labels were quite simple. Furthermore, the
presence of redundant edges in the dual graph increase the
number of comparison and hence the time complexity. Note
that in both the version of product graph the node and edge
labeling are computed online, since the time complexity of
the newer version is higher the node and edge labeling can be
done offline to reduce the online time. Qualitative results are
shown in Fig. 7 to Fig. 11. All the experiments are done with
the parameter values set as: tα = 0.025 × |Hu(dv)|, where
|Hu(dv)| is the number of paths connecting the two terminals
of dv, tβ1

= 6, tβ2
= 0.2, m = 15, n = 3 and nl = 10, these

parameters are chosen to give the optimal performance.

(a) (b) (c) (d) (e)

Fig. 6: Model symbols used to perform experiments:(a) arm-
chair, (b) sofa2, (c) table1, (d) table3.

Fig. 7: Qualitative results of spotting armchair which shows
correct detection of all the occurrences of armchair, at the
same time it includes two false detection of bed and table1
respectively.

IV. CONCLUSIONS

In this paper we extend the product graph methodology by
using the dual graph rather than the original representation
as a basis. It turns out that this dual graph representation
provides a robust way to deal with noise and distortions in the
structural information. The product graph exhibits similar paths

Fig. 8: Qualitative results of spotting bed which shows correct
detection of the only one occurrence of bed, note there is no
false detection.

Fig. 9: Qualitative results of spotting sofa2 which shows
correct detection of all the occurrences of sofa2 and also it
false detection of two instances of armchair. This is because
of the square regions in armchair resemble with the square
region in sofa2.

Fig. 10: Qualitative results of spotting table1 which shows all
the correct detection.

Fig. 11: Qualitative results of spotting table3 which shows all
the correct detection but a lot of false positives most of them
resemble with the smaller subpart of the symbol table3.

and exponentiation of the product graph’s adjacency matrix
allows one to extract similar paths of any desired length. So
these path similarities help to get similar nodes in the target
and input graph. The recall values obtained by the method are
very encouraging albeit we experienced lot of false positives
at the same time. A closer analysis reveals that this kind
of false positives are generated due to the tottering between
the nodes in the product graph [5]. So our future work will
address the removal of tottering from exponentiated adjacency
matrices [6], [7].

REFERENCES

[1] A. Dutta, J. Gibert, J. Lladós, H. Bunke, and U. Pal, “Combination of
product graph and random walk kernel for symbol spotting in graphical
documents,” in Proceedings of 21st International Conference of Pattern
Recognition, 2012, pp. 1663–1666.

[2] T. Gärtner, P. A. Flach, and S. Wrobel, “On graph kernels: Hardness
results and efficient alternatives,” in COLT, 2003, pp. 129–143.

[3] A. Dutta, J. Lladós, and U. Pal, “A symbol spotting approach in graphical
documents by hashing serialized graphs,” Pattern Recognition, vol. 46,
no. 3, pp. 752 – 768, 2013.

[4] M.-K. Hu, “Visual pattern recognition by moment invariants,” Informa-
tion Theory, IRE Transactions on, vol. 8, no. 2, pp. 179–187, 1962.

[5] P. Mahé, N. Ueda, T. Akutsu, J.-L. Perret, and J.-P. Vert, “Graph kernels
for molecular structure-activity relationship analysis with support vector
machines,” Journal of Chemical Information and Modeling, vol. 45,
no. 4, pp. 939–951, 2005.

[6] F. Aziz, R. Wilson, and E. Hancock, “Backtrackless walks on a graph,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 24,
no. 6, pp. 977–989, 2013.

[7] H. Stark and A. Terras, “Zeta functions of finite graphs and coverings,”
Advances in Mathematics, vol. 121, no. 1, pp. 124 – 165, 1996.

