toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author (up) Partha Pratim Roy; Umapada Pal; Josep Llados edit  url
doi  openurl
  Title Seal Object Detection in Document Images using GHT of Local Component Shapes Type Conference Article
  Year 2010 Publication 10th ACM Symposium On Applied Computing Abbreviated Journal  
  Volume Issue Pages 23–27  
  Keywords  
  Abstract Due to noise, overlapped text/signature and multi-oriented nature, seal (stamp) object detection involves a difficult challenge. This paper deals with automatic detection of seal from documents with cluttered background. Here, a seal object is characterized by scale and rotation invariant spatial feature descriptors (distance and angular position) computed from recognition result of individual connected components (characters). Recognition of multi-scale and multi-oriented component is done using Support Vector Machine classifier. Generalized Hough Transform (GHT) is used to detect the seal and a voting is casted for finding possible location of the seal object in a document based on these spatial feature descriptor of components pairs. The peak of votes in GHT accumulator validates the hypothesis to locate the seal object in a document. Experimental results show that, the method is efficient to locate seal instance of arbitrary shape and orientation in documents.  
  Address Sierre, Switzerland  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference SAC  
  Notes DAG Approved no  
  Call Number DAG @ dag @ RPL2010a Serial 1291  
Permanent link to this record
 

 
Author (up) Partha Pratim Roy; Umapada Pal; Josep Llados edit  doi
isbn  openurl
  Title Query Driven Word Retrieval in Graphical Documents Type Conference Article
  Year 2010 Publication 9th IAPR International Workshop on Document Analysis Systems Abbreviated Journal  
  Volume Issue Pages 191–198  
  Keywords  
  Abstract In this paper, we present an approach towards the retrieval of words from graphical document images. In graphical documents, due to presence of multi-oriented characters in non-structured layout, word indexing is a challenging task. The proposed approach uses recognition results of individual components to form character pairs with the neighboring components. An indexing scheme is designed to store the spatial description of components and to access them efficiently. Given a query text word (ascii/unicode format), the character pairs present in it are searched in the document. Next the retrieved character pairs are linked sequentially to form character string. Dynamic programming is applied to find different instances of query words. A string edit distance is used here to match the query word as the objective function. Recognition of multi-scale and multi-oriented character component is done using Support Vector Machine classifier. To consider multi-oriented character strings the features used in the SVM are invariant to character orientation. Experimental results show that the method is efficient to locate a query word from multi-oriented text in graphical documents.  
  Address Boston; USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-60558-773-8 Medium  
  Area Expedition Conference DAS  
  Notes DAG Approved no  
  Call Number DAG @ dag @ RPL2010b Serial 1433  
Permanent link to this record
 

 
Author (up) Partha Pratim Roy; Umapada Pal; Josep Llados edit  openurl
  Title Touching Text Character Localization in Graphical Documents using SIFT Type Conference Article
  Year 2009 Publication In proceedings 8th IAPR International Workshop on Graphics Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Interpretation of graphical document images is a challenging task as it requires proper understanding of text/graphics symbols present in such documents. Difficulties arise in graphical document recognition when text and symbol overlapped/touched. Intersection of text and symbols with graphical lines and curves occur frequently in graphical documents and hence separation of such symbols is very difficult.
Several pattern recognition and classification techniques exist to recognize isolated text/symbol. But, the touching/overlapping text and symbol recognition has not yet been dealt successfully. An interesting technique, Scale Invariant Feature Transform (SIFT), originally devised for object recognition can take care of overlapping problems. Even if SIFT features have emerged as a very powerful object descriptors, their employment in graphical documents context has not been investigated much. In this paper we present the adaptation of the SIFT approach in the context of text character localization (spotting) in graphical documents. We evaluate the applicability of this technique in such documents and discuss the scope of improvement by combining some state-of-the-art approaches.
 
  Address La rochelle; July 2009  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference GREC  
  Notes DAG Approved no  
  Call Number DAG @ dag @ RPL2009c Serial 1445  
Permanent link to this record
 

 
Author (up) Partha Pratim Roy; Umapada Pal; Josep Llados edit  doi
openurl 
  Title Document Seal Detection Using Ght and Character Proximity Graphs Type Journal Article
  Year 2011 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 44 Issue 6 Pages 1282-1295  
  Keywords Seal recognition; Graphical symbol spotting; Generalized Hough transform; Multi-oriented character recognition  
  Abstract This paper deals with automatic detection of seal (stamp) from documents with cluttered background. Seal detection involves a difficult challenge due to its multi-oriented nature, arbitrary shape, overlapping of its part with signature, noise, etc. Here, a seal object is characterized by scale and rotation invariant spatial feature descriptors computed from recognition result of individual connected components (characters). Scale and rotation invariant features are used in a Support Vector Machine (SVM) classifier to recognize multi-scale and multi-oriented text characters. The concept of generalized Hough transform (GHT) is used to detect the seal and a voting scheme is designed for finding possible location of the seal in a document based on the spatial feature descriptor of neighboring component pairs. The peak of votes in GHT accumulator validates the hypothesis to locate the seal in a document. Experiment is performed in an archive of historical documents of handwritten/printed English text. Experimental results show that the method is robust in locating seal instances of arbitrary shape and orientation in documents, and also efficient in indexing a collection of documents for retrieval purposes.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ RPL2011 Serial 1820  
Permanent link to this record
 

 
Author (up) Partha Pratim Roy; Umapada Pal; Josep Llados edit   pdf
doi  openurl
  Title Text line extraction in graphical documents using background and foreground Type Journal Article
  Year 2012 Publication International Journal on Document Analysis and Recognition Abbreviated Journal IJDAR  
  Volume 15 Issue 3 Pages 227-241  
  Keywords  
  Abstract 0,405 JCR
In graphical documents (e.g., maps, engineering drawings), artistic documents etc., the text lines are annotated in multiple orientations or curvilinear way to illustrate different locations or symbols. For the optical character recognition of such documents, individual text lines from the documents need to be extracted. In this paper, we propose a novel method to segment such text lines and the method is based on the foreground and background information of the text components. To effectively utilize the background information, a water reservoir concept is used here. In the proposed scheme, at first, individual components are detected and grouped into character clusters in a hierarchical way using size and positional information. Next, the clusters are extended in two extreme sides to determine potential candidate regions. Finally, with the help of these candidate regions,
individual lines are extracted. The experimental results are presented on different datasets of graphical documents, camera-based warped documents, noisy images containing seals, etc. The results demonstrate that our approach is robust and invariant to size and orientation of the text lines present in
the document.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-2833 ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ RPL2012b Serial 2134  
Permanent link to this record
 

 
Author (up) Partha Pratim Roy; Umapada Pal; Josep Llados edit  doi
isbn  openurl
  Title Touching Text Character Localization in Graphical Documents using SIFT Type Book Chapter
  Year 2010 Publication Graphics Recognition. Achievements, Challenges, and Evolution. 8th International Workshop, GREC 2009. Selected Papers Abbreviated Journal  
  Volume 6020 Issue Pages 199-211  
  Keywords Support Vector Machine; Text Component; Graphical Line; Document Image; Scale Invariant Feature Transform  
  Abstract Interpretation of graphical document images is a challenging task as it requires proper understanding of text/graphics symbols present in such documents. Difficulties arise in graphical document recognition when text and symbol overlapped/touched. Intersection of text and symbols with graphical lines and curves occur frequently in graphical documents and hence separation of such symbols is very difficult.
Several pattern recognition and classification techniques exist to recognize isolated text/symbol. But, the touching/overlapping text and symbol recognition has not yet been dealt successfully. An interesting technique, Scale Invariant Feature Transform (SIFT), originally devised for object recognition can take care of overlapping problems. Even if SIFT features have emerged as a very powerful object descriptors, their employment in graphical documents context has not been investigated much. In this paper we present the adaptation of the SIFT approach in the context of text character localization (spotting) in graphical documents. We evaluate the applicability of this technique in such documents and discuss the scope of improvement by combining some state-of-the-art approaches.
 
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-13727-3 Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ RPL2010c Serial 2408  
Permanent link to this record
 

 
Author (up) Partha Pratim Roy; Umapada Pal; Josep Llados; F. Kimura edit  doi
openurl 
  Title Convex Hull based Approach for Multi-oriented Character Recognition form Graphical Documents Type Conference Article
  Year 2008 Publication 19th International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address Tampa (Florida)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICPR  
  Notes DAG Approved no  
  Call Number DAG @ dag @ RPL2008d Serial 1073  
Permanent link to this record
 

 
Author (up) Partha Pratim Roy; Umapada Pal; Josep Llados; Mathieu Nicolas Delalandre edit  doi
isbn  openurl
  Title Multi-Oriented and Multi-Sized Touching Character Segmentation using Dynamic Programming Type Conference Article
  Year 2009 Publication 10th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 11–15  
  Keywords  
  Abstract In this paper, we present a scheme towards the segmentation of English multi-oriented touching strings into individual characters. When two or more characters touch, they generate a big cavity region at the background portion. Using Convex Hull information, we use these background information to find some initial points to segment a touching string into possible primitive segments (a primitive segment consists of a single character or a part of a character). Next these primitive segments are merged to get optimum segmentation and dynamic programming is applied using total likelihood of characters as the objective function. SVM classifier is used to find the likelihood of a character. To consider multi-oriented touching strings the features used in the SVM are invariant to character orientation. Circular ring and convex hull ring based approach has been used along with angular information of the contour pixels of the character to make the feature rotation invariant. From the experiment, we obtained encouraging results.  
  Address Barcelona, Spain  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-5363 ISBN 978-1-4244-4500-4 Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number DAG @ dag @ RPL2009a Serial 1240  
Permanent link to this record
 

 
Author (up) Partha Pratim Roy; Umapada Pal; Josep Llados; Mathieu Nicolas Delalandre edit   pdf
url  doi
openurl 
  Title Multi-oriented touching text character segmentation in graphical documents using dynamic programming Type Journal Article
  Year 2012 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 45 Issue 5 Pages 1972-1983  
  Keywords  
  Abstract 2,292 JCR
The touching character segmentation problem becomes complex when touching strings are multi-oriented. Moreover in graphical documents sometimes characters in a single-touching string have different orientations. Segmentation of such complex touching is more challenging. In this paper, we present a scheme towards the segmentation of English multi-oriented touching strings into individual characters. When two or more characters touch, they generate a big cavity region in the background portion. Based on the convex hull information, at first, we use this background information to find some initial points for segmentation of a touching string into possible primitives (a primitive consists of a single character or part of a character). Next, the primitives are merged to get optimum segmentation. A dynamic programming algorithm is applied for this purpose using the total likelihood of characters as the objective function. A SVM classifier is used to find the likelihood of a character. To consider multi-oriented touching strings the features used in the SVM are invariant to character orientation. Experiments were performed in different databases of real and synthetic touching characters and the results show that the method is efficient in segmenting touching characters of arbitrary orientations and sizes.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-3203 ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ RPL2012a Serial 2133  
Permanent link to this record
 

 
Author (up) Pau Riba edit  isbn
openurl 
  Title Distilling Structure from Imagery: Graph-based Models for the Interpretation of Document Images Type Book Whole
  Year 2020 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract From its early stages, the community of Pattern Recognition and Computer Vision has considered the importance of leveraging the structural information when understanding images. Usually, graphs have been proposed as a suitable model to represent this kind of information due to their flexibility and representational power able to codify both, the components, objects, or entities and their pairwise relationship. Even though graphs have been successfully applied to a huge variety of tasks, as a result of their symbolic and relational nature, graphs have always suffered from some limitations compared to statistical approaches. Indeed, some trivial mathematical operations do not have an equivalence in the graph domain. For instance, in the core of many pattern recognition applications, there is a need to compare two objects. This operation, which is trivial when considering feature vectors defined in \(\mathbb{R}^n\), is not properly defined for graphs.


In this thesis, we have investigated the importance of the structural information from two perspectives, the traditional graph-based methods and the new advances on Geometric Deep Learning. On the one hand, we explore the problem of defining a graph representation and how to deal with it on a large scale and noisy scenario. On the other hand, Graph Neural Networks are proposed to first redefine a Graph Edit Distance methodologies as a metric learning problem, and second, to apply them in a real use case scenario for the detection of repetitive patterns which define tables in invoice documents. As experimental framework, we have validated the different methodological contributions in the domain of Document Image Analysis and Recognition.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Josep Llados;Alicia Fornes  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-121011-6-4 Medium  
  Area Expedition Conference  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ Rib20 Serial 3478  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: