toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author (down) Lluis Pere de las Heras; Oriol Ramos Terrades; Josep Llados edit  url
doi  openurl
  Title Attributed Graph Grammar for floor plan analysis Type Conference Article
  Year 2015 Publication 13th International Conference on Document Analysis and Recognition ICDAR2015 Abbreviated Journal  
  Volume Issue Pages 726 - 730  
  Keywords  
  Abstract In this paper, we propose the use of an Attributed Graph Grammar as unique framework to model and recognize the structure of floor plans. This grammar represents a building as a hierarchical composition of structurally and semantically related elements, where common representations are learned stochastically from annotated data. Given an input image, the parsing consists on constructing that graph representation that better agrees with the probabilistic model defined by the grammar. The proposed method provides several advantages with respect to the traditional floor plan analysis techniques. It uses an unsupervised statistical approach for detecting walls that adapts to different graphical notations and relaxes strong structural assumptions such are straightness and orthogonality. Moreover, the independence between the knowledge model and the parsing implementation allows the method to learn automatically different building configurations and thus, to cope the existing variability. These advantages are clearly demonstrated by comparing it with the most recent floor plan interpretation techniques on 4 datasets of real floor plans with different notations.  
  Address Nancy; France; August 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.077; 600.061 Approved no  
  Call Number Admin @ si @ HRL2015b Serial 2727  
Permanent link to this record
 

 
Author (down) Lluis Pere de las Heras; Oriol Ramos Terrades; Josep Llados edit  url
openurl 
  Title Ontology-Based Understanding of Architectural Drawings Type Book Chapter
  Year 2017 Publication International Workshop on Graphics Recognition. GREC 2015.Graphic Recognition. Current Trends and Challenges Abbreviated Journal  
  Volume 9657 Issue Pages 75-85  
  Keywords Graphics recognition; Floor plan analysi; Domain ontology  
  Abstract In this paper we present a knowledge base of architectural documents aiming at improving existing methods of floor plan classification and understanding. It consists of an ontological definition of the domain and the inclusion of real instances coming from both, automatically interpreted and manually labeled documents. The knowledge base has proven to be an effective tool to structure our knowledge and to easily maintain and upgrade it. Moreover, it is an appropriate means to automatically check the consistency of relational data and a convenient complement of hard-coded knowledge interpretation systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ HRL2017 Serial 3086  
Permanent link to this record
 

 
Author (down) Lluis Pere de las Heras; Joan Mas; Gemma Sanchez; Ernest Valveny edit  url
doi  isbn
openurl 
  Title Wall Patch-Based Segmentation in Architectural Floorplans Type Conference Article
  Year 2011 Publication 11th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 1270-1274  
  Keywords  
  Abstract Segmentation of architectural floor plans is a challenging task, mainly because of the large variability in the notation between different plans. In general, traditional techniques, usually based on analyzing and grouping structural primitives obtained by vectorization, are only able to handle a reduced range of similar notations. In this paper we propose an alternative patch-based segmentation approach working at pixel level, without need of vectorization. The image is divided into a set of patches and a set of features is extracted for every patch. Then, each patch is assigned to a visual word of a previously learned vocabulary and given a probability of belonging to each class of objects. Finally, a post-process assigns the final label for every pixel. This approach has been applied to the detection of walls on two datasets of architectural floor plans with different notations, achieving high accuracy rates.  
  Address Beiging, China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-5363 ISBN 978-0-7695-4520-2 Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ HMS2011a Serial 1792  
Permanent link to this record
 

 
Author (down) Lluis Pere de las Heras; Joan Mas; Gemma Sanchez; Ernest Valveny edit  openurl
  Title Descriptor-based Svm Wall Detector Type Conference Article
  Year 2011 Publication 9th International Workshop on Graphic Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Architectural floorplans exhibit a large variability in notation. Therefore, segmenting and identifying the elements of any kind of plan becomes a challenging task for approaches based on grouping structural primitives obtained by vectorization. Recently, a patch-based segmentation method working at pixel level and relying on the construction of a visual vocabulary has been proposed showing its adaptability to different notations by automatically learning the visual appearance of the elements in each different notation. In this paper we describe an evolution of this new approach in two directions: firstly we evaluate different features to obtain the description of every patch. Secondly, we train an SVM classifier to obtain the category of every patch instead of constructing a visual vocabulary. These modifications of the method have been tested for wall detection on two datasets of architectural floorplans with different notations and compared with the results obtained with the original approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference GREC  
  Notes DAG Approved no  
  Call Number Admin @ si @ HMS2011b Serial 1819  
Permanent link to this record
 

 
Author (down) Lluis Pere de las Heras; Joan Mas; Gemma Sanchez; Ernest Valveny edit   pdf
doi  isbn
openurl 
  Title Notation-invariant patch-based wall detector in architectural floor plans Type Book Chapter
  Year 2013 Publication Graphics Recognition. New Trends and Challenges Abbreviated Journal  
  Volume 7423 Issue Pages 79--88  
  Keywords  
  Abstract Architectural floor plans exhibit a large variability in notation. Therefore, segmenting and identifying the elements of any kind of plan becomes a challenging task for approaches based on grouping structural primitives obtained by vectorization. Recently, a patch-based segmentation method working at pixel level and relying on the construction of a visual vocabulary has been proposed in [1], showing its adaptability to different notations by automatically learning the visual appearance of the elements in each different notation. This paper presents an evolution of that previous work, after analyzing and testing several alternatives for each of the different steps of the method: Firstly, an automatic plan-size normalization process is done. Secondly we evaluate different features to obtain the description of every patch. Thirdly, we train an SVM classifier to obtain the category of every patch instead of constructing a visual vocabulary. These variations of the method have been tested for wall detection on two datasets of architectural floor plans with different notations. After studying in deep each of the steps in the process pipeline, we are able to find the best system configuration, which highly outperforms the results on wall segmentation obtained by the original paper.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-36823-3 Medium  
  Area Expedition Conference  
  Notes DAG; 600.045; 600.056; 605.203 Approved no  
  Call Number Admin @ si @ HMS2013 Serial 2322  
Permanent link to this record
 

 
Author (down) Lluis Pere de las Heras; Gemma Sanchez edit  doi
isbn  openurl
  Title And-Or Graph Grammar for Architectural Floorplan Representation, Learning and Recognition. A Semantic, Structural and Hierarchical Model Type Conference Article
  Year 2011 Publication 5th Iberian Conference on Pattern Recognition and Image Analysis Abbreviated Journal  
  Volume 6669 Issue Pages 17-24  
  Keywords  
  Abstract This paper presents a syntactic model for architectural floor plan interpretation. A stochastic image grammar over an And-Or graph is inferred to represent the hierarchical, structural and semantic relations between elements of all possible floor plans. This grammar is augmented with three different probabilistic models, learnt from a training set, to account the frequency of that relations. Then, a Bottom-Up/Top-Down parser with a pruning strategy has been used for floor plan recognition. For a given input, the parser generates the most probable parse graph for that document. This graph not only contains the structural and semantic relations of its elements, but also its hierarchical composition, that allows to interpret the floor plan at different levels of abstraction.  
  Address Las Palmas de Gran Canaria. Spain  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-642-21256-7 Medium  
  Area Expedition Conference IbPRIA  
  Notes DAG Approved no  
  Call Number Admin @ si @ HeS2011 Serial 1736  
Permanent link to this record
 

 
Author (down) Lluis Pere de las Heras; Ernest Valveny; Gemma Sanchez edit   pdf
openurl 
  Title Combining structural and statistical strategies for unsupervised wall detection in floor plans Type Conference Article
  Year 2013 Publication 10th IAPR International Workshop on Graphics Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract This paper presents an evolution of the first unsupervised wall segmentation method in floor plans, that was presented by the authors in [1]. This first approach, contrarily to the existing ones, is able to segment walls independently to their notation and without the need of any pre-annotated data
to learn their visual appearance. Despite the good performance of the first approach, some specific cases, such as curved shaped walls, were not correctly segmented since they do not agree the strict structural assumptions that guide the whole methodology in order to be able to learn, in an unsupervised way, the structure of a wall. In this paper, we refine this strategy by dividing the
process in two steps. In a first step, potential wall segments are extracted unsupervisedly using a modification of [1], by restricting even more the areas considered as walls in a first moment. In a second step, these segments are used to learn and spot lost instances based on a modified version of [2], also presented by the authors. The presented combined method have been tested on
4 datasets with different notations and compared with the stateof-the-art applyed on the same datasets. The results show its adaptability to different wall notations and shapes, significantly outperforming the original approach.
 
  Address Bethlehem; PA; USA; August 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference GREC  
  Notes DAG; 600.045 Approved no  
  Call Number Admin @ si @ HVS2013a Serial 2321  
Permanent link to this record
 

 
Author (down) Lluis Pere de las Heras; Ernest Valveny; Gemma Sanchez edit  doi
isbn  openurl
  Title Unsupervised and Notation-Independent Wall Segmentation in Floor Plans Using a Combination of Statistical and Structural Strategies Type Book Chapter
  Year 2014 Publication Graphics Recognition. Current Trends and Challenges Abbreviated Journal  
  Volume 8746 Issue Pages 109-121  
  Keywords Graphics recognition; Floor plan analysis; Object segmentation  
  Abstract In this paper we present a wall segmentation approach in floor plans that is able to work independently to the graphical notation, does not need any pre-annotated data for learning, and is able to segment multiple-shaped walls such as beams and curved-walls. This method results from the combination of the wall segmentation approaches [3, 5] presented recently by the authors. Firstly, potential straight wall segments are extracted in an unsupervised way similar to [3], but restricting even more the wall candidates considered in the original approach. Then, based on [5], these segments are used to learn the texture pattern of walls and spot the lost instances. The presented combination of both methods has been tested on 4 available datasets with different notations and compared qualitatively and quantitatively to the state-of-the-art applied on these collections. Additionally, some qualitative results on floor plans directly downloaded from the Internet are reported in the paper. The overall performance of the method demonstrates either its adaptability to different wall notations and shapes, and to document qualities and resolutions.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-662-44853-3 Medium  
  Area Expedition Conference  
  Notes DAG; ADAS; 600.076; 600.077 Approved no  
  Call Number Admin @ si @ HVS2014 Serial 2535  
Permanent link to this record
 

 
Author (down) Lluis Pere de las Heras; Ernest Valveny; Gemma Sanchez edit  openurl
  Title Unsupervised and Notation-Independent Wall Segmentation in Floor Plans Using a Combination of Statistical and Structural Strategies Type Conference Article
  Year 2013 Publication 10th IAPR International Workshop on Graphics Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address Bethlehem; PA; USA; August 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference GREC  
  Notes DAG Approved no  
  Call Number Admin @ si @ HVS2013b Serial 2696  
Permanent link to this record
 

 
Author (down) Lluis Pere de las Heras; David Fernandez; Ernest Valveny; Josep Llados; Gemma Sanchez edit   pdf
doi  openurl
  Title Unsupervised wall detector in architectural floor plan Type Conference Article
  Year 2013 Publication 12th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 1245-1249  
  Keywords  
  Abstract Wall detection in floor plans is a crucial step in a complete floor plan recognition system. Walls define the main structure of buildings and convey essential information for the detection of other structural elements. Nevertheless, wall segmentation is a difficult task, mainly because of the lack of a standard graphical notation. The existing approaches are restricted to small group of similar notations or require the existence of pre-annotated corpus of input images to learn each new notation. In this paper we present an automatic wall segmentation system, with the ability to handle completely different notations without the need of any annotated dataset. It only takes advantage of the general knowledge that walls are a repetitive element, naturally distributed within the plan and commonly modeled by straight parallel lines. The method has been tested on four datasets of real floor plans with different notations, and compared with the state-of-the-art. The results show its suitability for different graphical notations, achieving higher recall rates than the rest of the methods while keeping a high average precision.  
  Address Washington; USA; August 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-5363 ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.061; 600.056; 600.045 Approved no  
  Call Number Admin @ si @ HFV2013 Serial 2319  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: