toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author (down) Volkmar Frinken; Francisco Zamora; Salvador España; Maria Jose Castro; Andreas Fischer; Horst Bunke edit   pdf
isbn  openurl
  Title Long-Short Term Memory Neural Networks Language Modeling for Handwriting Recognition Type Conference Article
  Year 2012 Publication 21st International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 701-704  
  Keywords  
  Abstract Unconstrained handwritten text recognition systems maximize the combination of two separate probability scores. The first one is the observation probability that indicates how well the returned word sequence matches the input image. The second score is the probability that reflects how likely a word sequence is according to a language model. Current state-of-the-art recognition systems use statistical language models in form of bigram word probabilities. This paper proposes to model the target language by means of a recurrent neural network with long-short term memory cells. Because the network is recurrent, the considered context is not limited to a fixed size especially as the memory cells are designed to deal with long-term dependencies. In a set of experiments conducted on the IAM off-line database we show the superiority of the proposed language model over statistical n-gram models.  
  Address Tsukuba Science City, Japan  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-4651 ISBN 978-1-4673-2216-4 Medium  
  Area Expedition Conference ICPR  
  Notes DAG Approved no  
  Call Number Admin @ si @ FZE2012 Serial 2052  
Permanent link to this record
 

 
Author (down) Volkmar Frinken; Andreas Fischer; Markus Baumgartner; Horst Bunke edit   pdf
doi  openurl
  Title Keyword spotting for self-training of BLSTM NN based handwriting recognition systems Type Journal Article
  Year 2014 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 47 Issue 3 Pages 1073-1082  
  Keywords Document retrieval; Keyword spotting; Handwriting recognition; Neural networks; Semi-supervised learning  
  Abstract The automatic transcription of unconstrained continuous handwritten text requires well trained recognition systems. The semi-supervised paradigm introduces the concept of not only using labeled data but also unlabeled data in the learning process. Unlabeled data can be gathered at little or not cost. Hence it has the potential to reduce the need for labeling training data, a tedious and costly process. Given a weak initial recognizer trained on labeled data, self-training can be used to recognize unlabeled data and add words that were recognized with high confidence to the training set for re-training. This process is not trivial and requires great care as far as selecting the elements that are to be added to the training set is concerned. In this paper, we propose to use a bidirectional long short-term memory neural network handwritten recognition system for keyword spotting in order to select new elements. A set of experiments shows the high potential of self-training for bootstrapping handwriting recognition systems, both for modern and historical handwritings, and demonstrate the benefits of using keyword spotting over previously published self-training schemes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.077; 602.101 Approved no  
  Call Number Admin @ si @ FFB2014 Serial 2297  
Permanent link to this record
 

 
Author (down) Volkmar Frinken; Andreas Fischer; Horst Bunke; Alicia Fornes edit  doi
openurl 
  Title Co-training for Handwritten Word Recognition Type Conference Article
  Year 2011 Publication 11th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 314-318  
  Keywords  
  Abstract To cope with the tremendous variations of writing styles encountered between different individuals, unconstrained automatic handwriting recognition systems need to be trained on large sets of labeled data. Traditionally, the training data has to be labeled manually, which is a laborious and costly process. Semi-supervised learning techniques offer methods to utilize unlabeled data, which can be obtained cheaply in large amounts in order, to reduce the need for labeled data. In this paper, we propose the use of Co-Training for improving the recognition accuracy of two weakly trained handwriting recognition systems. The first one is based on Recurrent Neural Networks while the second one is based on Hidden Markov Models. On the IAM off-line handwriting database we demonstrate a significant increase of the recognition accuracy can be achieved with Co-Training for single word recognition.  
  Address Beijing, China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ FFB2011 Serial 1789  
Permanent link to this record
 

 
Author (down) Volkmar Frinken; Andreas Fischer; Carlos David Martinez Hinarejos edit   pdf
doi  isbn
openurl 
  Title Handwriting Recognition in Historical Documents using Very Large Vocabularies Type Conference Article
  Year 2013 Publication 2nd International Workshop on Historical Document Imaging and Processing Abbreviated Journal  
  Volume Issue Pages 67-72  
  Keywords  
  Abstract Language models are used in automatic transcription system to resolve ambiguities. This is done by limiting the vocabulary of words that can be recognized as well as estimating the n-gram probability of the words in the given text. In the context of historical documents, a non-unified spelling and the limited amount of written text pose a substantial problem for the selection of the recognizable vocabulary as well as the computation of the word probabilities. In this paper we propose for the transcription of historical Spanish text to keep the corpus for the n-gram limited to a sample of the target text, but expand the vocabulary with words gathered from external resources. We analyze the performance of such a transcription system with different sizes of external vocabularies and demonstrate the applicability and the significant increase in recognition accuracy of using up to 300 thousand external words.  
  Address Washington; USA; August 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4503-2115-0 Medium  
  Area Expedition Conference HIP  
  Notes DAG; 600.056; 600.045; 600.061; 602.006; 602.101 Approved no  
  Call Number Admin @ si @ FFM2013 Serial 2296  
Permanent link to this record
 

 
Author (down) Volkmar Frinken; Alicia Fornes; Josep Llados; Jean-Marc Ogier edit   pdf
doi  isbn
openurl 
  Title Bidirectional Language Model for Handwriting Recognition Type Conference Article
  Year 2012 Publication Structural, Syntactic, and Statistical Pattern Recognition, Joint IAPR International Workshop Abbreviated Journal  
  Volume 7626 Issue Pages 611-619  
  Keywords  
  Abstract In order to improve the results of automatically recognized handwritten text, information about the language is commonly included in the recognition process. A common approach is to represent a text line as a sequence. It is processed in one direction and the language information via n-grams is directly included in the decoding. This approach, however, only uses context on one side to estimate a word’s probability. Therefore, we propose a bidirectional recognition in this paper, using distinct forward and a backward language models. By combining decoding hypotheses from both directions, we achieve a significant increase in recognition accuracy for the off-line writer independent handwriting recognition task. Both language models are of the same type and can be estimated on the same corpus. Hence, the increase in recognition accuracy comes without any additional need for training data or language modeling complexity.  
  Address Japan  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-34165-6 Medium  
  Area Expedition Conference SSPR&SPR  
  Notes DAG Approved no  
  Call Number Admin @ si @ FFL2012 Serial 2057  
Permanent link to this record
 

 
Author (down) Veronica Romero; Emilio Granell; Alicia Fornes; Enrique Vidal; Joan Andreu Sanchez edit   pdf
url  openurl
  Title Information Extraction in Handwritten Marriage Licenses Books Type Conference Article
  Year 2019 Publication 5th International Workshop on Historical Document Imaging and Processing Abbreviated Journal  
  Volume Issue Pages 66-71  
  Keywords  
  Abstract Handwritten marriage licenses books are characterized by a simple structure of the text in the records with an evolutionary vocabulary, mainly composed of proper names that change along the time. This distinct vocabulary makes automatic transcription and semantic information extraction difficult tasks. Previous works have shown that the use of category-based language models and a Grammatical Inference technique known as MGGI can improve the accuracy of these
tasks. However, the application of the MGGI algorithm requires an a priori knowledge to label the words of the training strings, that is not always easy to obtain. In this paper we study how to automatically obtain the information required by the MGGI algorithm using a technique based on Confusion Networks. Using the resulting language model, full handwritten text recognition and information extraction experiments have been carried out with results supporting the proposed approach.
 
  Address Sydney; Australia; September 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference HIP  
  Notes DAG; 600.140; 600.121 Approved no  
  Call Number Admin @ si @ RGF2019 Serial 3352  
Permanent link to this record
 

 
Author (down) Veronica Romero; Alicia Fornes; Nicolas Serrano; Joan Andreu Sanchez; A.H. Toselli; Volkmar Frinken; E. Vidal; Josep Llados edit   pdf
doi  openurl
  Title The ESPOSALLES database: An ancient marriage license corpus for off-line handwriting recognition Type Journal Article
  Year 2013 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 46 Issue 6 Pages 1658-1669  
  Keywords  
  Abstract Historical records of daily activities provide intriguing insights into the life of our ancestors, useful for demography studies and genealogical research. Automatic processing of historical documents, however, has mostly been focused on single works of literature and less on social records, which tend to have a distinct layout, structure, and vocabulary. Such information is usually collected by expert demographers that devote a lot of time to manually transcribe them. This paper presents a new database, compiled from a marriage license books collection, to support research in automatic handwriting recognition for historical documents containing social records. Marriage license books are documents that were used for centuries by ecclesiastical institutions to register marriage licenses. Books from this collection are handwritten and span nearly half a millennium until the beginning of the 20th century. In addition, a study is presented about the capability of state-of-the-art handwritten text recognition systems, when applied to the presented database. Baseline results are reported for reference in future studies.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Science Inc. New York, NY, USA Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-3203 ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.045; 602.006; 605.203 Approved no  
  Call Number Admin @ si @ RFS2013 Serial 2298  
Permanent link to this record
 

 
Author (down) Veronica Romero; Alicia Fornes; Enrique Vidal; Joan Andreu Sanchez edit   pdf
isbn  openurl
  Title Information Extraction in Handwritten Marriage Licenses Books Using the MGGI Methodology Type Conference Article
  Year 2017 Publication 8th Iberian Conference on Pattern Recognition and Image Analysis Abbreviated Journal  
  Volume 10255 Issue Pages 287-294  
  Keywords Handwritten Text Recognition; Information extraction; Language modeling; MGGI; Categories-based language model  
  Abstract Historical records of daily activities provide intriguing insights into the life of our ancestors, useful for demographic and genealogical research. For example, marriage license books have been used for centuries by ecclesiastical and secular institutions to register marriages. These books follow a simple structure of the text in the records with a evolutionary vocabulary, mainly composed of proper names that change along the time. This distinct vocabulary makes automatic transcription and semantic information extraction difficult tasks. In previous works we studied the use of category-based language models and how a Grammatical Inference technique known as MGGI could improve the accuracy of these tasks. In this work we analyze the main causes of the semantic errors observed in previous results and apply a better implementation of the MGGI technique to solve these problems. Using the resulting language model, transcription and information extraction experiments have been carried out, and the results support our proposed approach.  
  Address Faro; Portugal; June 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor L.A. Alexandre; J.Salvador Sanchez; Joao M. F. Rodriguez  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-319-58837-7 Medium  
  Area Expedition Conference IbPRIA  
  Notes DAG; 602.006; 600.097; 600.121 Approved no  
  Call Number Admin @ si @ RFV2017 Serial 2952  
Permanent link to this record
 

 
Author (down) Veronica Romero; Alicia Fornes; Enrique Vidal; Joan Andreu Sanchez edit   pdf
openurl 
  Title Using the MGGI Methodology for Category-based Language Modeling in Handwritten Marriage Licenses Books Type Conference Article
  Year 2016 Publication 15th international conference on Frontiers in Handwriting Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Handwritten marriage licenses books have been used for centuries by ecclesiastical and secular institutions to register marriages. The information contained in these historical documents is useful for demography studies and
genealogical research, among others. Despite the generally simple structure of the text in these documents, automatic transcription and semantic information extraction is difficult due to the distinct and evolutionary vocabulary, which is composed mainly of proper names that change along the time. In previous
works we studied the use of category-based language models to both improve the automatic transcription accuracy and make easier the extraction of semantic information. Here we analyze the main causes of the semantic errors observed in previous results and apply a Grammatical Inference technique known as MGGI to improve the semantic accuracy of the language model obtained. Using this language model, full handwritten text recognition experiments have been carried out, with results supporting the interest of the proposed approach.
 
  Address Shenzhen; China; October 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICFHR  
  Notes DAG; 600.097; 602.006 Approved no  
  Call Number Admin @ si @ RFV2016 Serial 2909  
Permanent link to this record
 

 
Author (down) V.C.Kieu; Alicia Fornes; M. Visani; N.Journet ; Anjan Dutta edit   pdf
openurl 
  Title The ICDAR/GREC 2013 Music Scores Competition on Staff Removal Type Conference Article
  Year 2013 Publication 10th IAPR International Workshop on Graphics Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords Competition; Music scores; Staff Removal  
  Abstract The first competition on music scores that was organized at ICDAR and GREC in 2011 awoke the interest of researchers, who participated both at staff removal and writer identification tasks. In this second edition, we propose a staff removal competition where we simulate old music scores. Thus, we have created a new set of images, which contain noise and 3D distortions. This paper describes the distortion methods, metrics, the participant’s methods and the obtained results.  
  Address Bethlehem; PA; USA; August 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference GREC  
  Notes DAG; 600.045; 600.061 Approved no  
  Call Number Admin @ si @ KFV2013 Serial 2337  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: