toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author (down) Zheng Huang; Kai Chen; Jianhua He; Xiang Bai; Dimosthenis Karatzas; Shijian Lu; CV Jawahar edit   pdf
url  doi
openurl 
  Title ICDAR2019 Competition on Scanned Receipt OCR and Information Extraction Type Conference Article
  Year 2019 Publication 15th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 1516-1520  
  Keywords  
  Abstract The ICDAR 2019 Challenge on “Scanned receipts OCR and key information extraction” (SROIE) covers important aspects related to the automated analysis of scanned receipts. The SROIE tasks play a key role in many document analysis systems and hold significant commercial potential. Although a lot of work has been published over the years on administrative document analysis, the community has advanced relatively slowly, as most datasets have been kept private. One of the key contributions of SROIE to the document analysis community is to offer a first, standardized dataset of 1000 whole scanned receipt images and annotations, as well as an evaluation procedure for such tasks. The Challenge is structured around three tasks, namely Scanned Receipt Text Localization (Task 1), Scanned Receipt OCR (Task 2) and Key Information Extraction from Scanned Receipts (Task 3). The competition opened on 10th February, 2019 and closed on 5th May, 2019. We received 29, 24 and 18 valid submissions received for the three competition tasks, respectively. This report presents the competition datasets, define the tasks and the evaluation protocols, offer detailed submission statistics, as well as an analysis of the submitted performance. While the tasks of text localization and recognition seem to be relatively easy to tackle, it is interesting to observe the variety of ideas and approaches proposed for the information extraction task. According to the submissions' performance we believe there is still margin for improving information extraction performance, although the current dataset would have to grow substantially in following editions. Given the success of the SROIE competition evidenced by the wide interest generated and the healthy number of submissions from academic, research institutes and industry over different countries, we consider that the SROIE competition can evolve into a useful resource for the community, drawing further attention and promoting research and development efforts in this field.  
  Address Sydney; Australia; September 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.129 Approved no  
  Call Number Admin @ si @ HCH2019 Serial 3338  
Permanent link to this record
 

 
Author (down) Yunchao Gong; Svetlana Lazebnik; Albert Gordo; Florent Perronnin edit   pdf
doi  isbn
openurl 
  Title Iterative quantization: A procrustean approach to learning binary codes for Large-Scale Image Retrieval Type Journal Article
  Year 2012 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 35 Issue 12 Pages 2916-2929  
  Keywords  
  Abstract This paper addresses the problem of learning similarity-preserving binary codes for efficient similarity search in large-scale image collections. We formulate this problem in terms of finding a rotation of zero-centered data so as to minimize the quantization error of mapping this data to the vertices of a zero-centered binary hypercube, and propose a simple and efficient alternating minimization algorithm to accomplish this task. This algorithm, dubbed iterative quantization (ITQ), has connections to multi-class spectral clustering and to the orthogonal Procrustes problem, and it can be used both with unsupervised data embeddings such as PCA and supervised embeddings such as canonical correlation analysis (CCA). The resulting binary codes significantly outperform several other state-of-the-art methods. We also show that further performance improvements can result from transforming the data with a nonlinear kernel mapping prior to PCA or CCA. Finally, we demonstrate an application of ITQ to learning binary attributes or “classemes” on the ImageNet dataset.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0162-8828 ISBN 978-1-4577-0394-2 Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ GLG 2012b Serial 2008  
Permanent link to this record
 

 
Author (down) Youssef El Rhabi; Simon Loic; Brun Luc; Josep Llados; Felipe Lumbreras edit  doi
openurl 
  Title Information Theoretic Rotationwise Robust Binary Descriptor Learning Type Conference Article
  Year 2016 Publication Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR) Abbreviated Journal  
  Volume Issue Pages 368-378  
  Keywords  
  Abstract In this paper, we propose a new data-driven approach for binary descriptor selection. In order to draw a clear analysis of common designs, we present a general information-theoretic selection paradigm. It encompasses several standard binary descriptor construction schemes, including a recent state-of-the-art one named BOLD. We pursue the same endeavor to increase the stability of the produced descriptors with respect to rotations. To achieve this goal, we have designed a novel offline selection criterion which is better adapted to the online matching procedure. The effectiveness of our approach is demonstrated on two standard datasets, where our descriptor is compared to BOLD and to several classical descriptors. In particular, it emerges that our approach can reproduce equivalent if not better performance as BOLD while relying on twice shorter descriptors. Such an improvement can be influential for real-time applications.  
  Address Mérida; Mexico; November 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference S+SSPR  
  Notes DAG; ADAS; 600.097; 600.086 Approved no  
  Call Number Admin @ si @ RLL2016 Serial 2871  
Permanent link to this record
 

 
Author (down) Youssef El Rhabi; Simon Loic; Brun Luc edit   pdf
url  openurl
  Title Estimation de la pose d’une caméra à partir d’un flux vidéo en s’approchant du temps réel Type Conference Article
  Year 2015 Publication 15ème édition d'ORASIS, journées francophones des jeunes chercheurs en vision par ordinateur ORASIS2015 Abbreviated Journal  
  Volume Issue Pages  
  Keywords Augmented Reality; SFM; SLAM; real time pose computation; 2D/3D registration  
  Abstract Finding a way to estimate quickly and robustly the pose of an image is essential in augmented reality. Here we will discuss the approach we chose in order to get closer to real time by using SIFT points [4]. We propose a method based on filtering both SIFT points and images on which to focus on. Hence we will focus on relevant data.  
  Address Amiens; France; June 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ORASIS  
  Notes DAG; 600.077 Approved no  
  Call Number Admin @ si @ RLL2015 Serial 2626  
Permanent link to this record
 

 
Author (down) Yipeng Sun; Zihan Ni; Chee-Kheng Chng; Yuliang Liu; Canjie Luo; Chun Chet Ng; Junyu Han; Errui Ding; Jingtuo Liu; Dimosthenis Karatzas; Chee Seng Chan; Lianwen Jin edit   pdf
url  doi
openurl 
  Title ICDAR 2019 Competition on Large-Scale Street View Text with Partial Labeling – RRC-LSVT Type Conference Article
  Year 2019 Publication 15th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 1557-1562  
  Keywords  
  Abstract Robust text reading from street view images provides valuable information for various applications. Performance improvement of existing methods in such a challenging scenario heavily relies on the amount of fully annotated training data, which is costly and in-efficient to obtain. To scale up the amount of training data while keeping the labeling procedure cost-effective, this competition introduces a new challenge on Large-scale Street View Text with Partial Labeling (LSVT), providing 50, 000 and 400, 000 images in full and weak annotations, respectively. This competition aims to explore the abilities of state-of-the-art methods to detect and recognize text instances from large-scale street view images, closing the gap between research benchmarks and real applications. During the competition period, a total of 41 teams participated in the two proposed tasks with 132 valid submissions, ie, text detection and end-to-end text spotting. This paper includes dataset descriptions, task definitions, evaluation protocols and results summaries of the ICDAR 2019-LSVT challenge.  
  Address Sydney; Australia; September 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.129; 600.121 Approved no  
  Call Number Admin @ si @ SNC2019 Serial 3339  
Permanent link to this record
 

 
Author (down) Y. Patel; Lluis Gomez; Raul Gomez; Marçal Rusiñol; Dimosthenis Karatzas; C.V. Jawahar edit  openurl
  Title TextTopicNet-Self-Supervised Learning of Visual Features Through Embedding Images on Semantic Text Spaces Type Miscellaneous
  Year 2018 Publication Arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract The immense success of deep learning based methods in computer vision heavily relies on large scale training datasets. These richly annotated datasets help the network learn discriminative visual features. Collecting and annotating such datasets requires a tremendous amount of human effort and annotations are limited to popular set of classes. As an alternative, learning visual features by designing auxiliary tasks which make use of freely available self-supervision has become increasingly popular in the computer vision community.
In this paper, we put forward an idea to take advantage of multi-modal context to provide self-supervision for the training of computer vision algorithms. We show that adequate visual features can be learned efficiently by training a CNN to predict the semantic textual context in which a particular image is more probable to appear as an illustration. More specifically we use popular text embedding techniques to provide the self-supervision for the training of deep CNN.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.084; 601.338; 600.121 Approved no  
  Call Number Admin @ si @ PGG2018 Serial 3177  
Permanent link to this record
 

 
Author (down) Y. Patel; Lluis Gomez; Marçal Rusiñol; Dimosthenis Karatzas; C.V. Jawahar edit   pdf
url  doi
openurl 
  Title Self-Supervised Visual Representations for Cross-Modal Retrieval Type Conference Article
  Year 2019 Publication ACM International Conference on Multimedia Retrieval Abbreviated Journal  
  Volume Issue Pages 182–186  
  Keywords  
  Abstract Cross-modal retrieval methods have been significantly improved in last years with the use of deep neural networks and large-scale annotated datasets such as ImageNet and Places. However, collecting and annotating such datasets requires a tremendous amount of human effort and, besides, their annotations are limited to discrete sets of popular visual classes that may not be representative of the richer semantics found on large-scale cross-modal retrieval datasets. In this paper, we present a self-supervised cross-modal retrieval framework that leverages as training data the correlations between images and text on the entire set of Wikipedia articles. Our method consists in training a CNN to predict: (1) the semantic context of the article in which an image is more probable to appear as an illustration, and (2) the semantic context of its caption. Our experiments demonstrate that the proposed method is not only capable of learning discriminative visual representations for solving vision tasks like classification, but that the learned representations are better for cross-modal retrieval when compared to supervised pre-training of the network on the ImageNet dataset.  
  Address Otawa; Canada; june 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICMR  
  Notes DAG; 600.121; 600.129 Approved no  
  Call Number Admin @ si @ PGR2019 Serial 3288  
Permanent link to this record
 

 
Author (down) Y. Patel; Lluis Gomez; Marçal Rusiñol; Dimosthenis Karatzas edit   pdf
openurl 
  Title Dynamic Lexicon Generation for Natural Scene Images Type Conference Article
  Year 2016 Publication 14th European Conference on Computer Vision Workshops Abbreviated Journal  
  Volume Issue Pages 395-410  
  Keywords scene text; photo OCR; scene understanding; lexicon generation; topic modeling; CNN  
  Abstract Many scene text understanding methods approach the endtoend recognition problem from a word-spotting perspective and take huge bene t from using small per-image lexicons. Such customized lexicons are normally assumed as given and their source is rarely discussed.
In this paper we propose a method that generates contextualized lexicons
for scene images using only visual information. For this, we exploit
the correlation between visual and textual information in a dataset consisting
of images and textual content associated with them. Using the topic modeling framework to discover a set of latent topics in such a dataset allows us to re-rank a xed dictionary in a way that prioritizes the words that are more likely to appear in a given image. Moreover, we train a CNN that is able to reproduce those word rankings but using only the image raw pixels as input. We demonstrate that the quality of the automatically obtained custom lexicons is superior to a generic frequency-based baseline.
 
  Address Amsterdam; The Netherlands; October 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ECCVW  
  Notes DAG; 600.084 Approved no  
  Call Number Admin @ si @ PGR2016 Serial 2825  
Permanent link to this record
 

 
Author (down) W. Liu; Josep Llados edit  openurl
  Title Graphics Recognition. Ten Years Review and Future Perspectives Type Book Whole
  Year 2006 Publication 6th International Workshop Abbreviated Journal  
  Volume 3926 Issue Pages  
  Keywords  
  Abstract  
  Address Hong Kong (China)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference GREC  
  Notes DAG Approved no  
  Call Number DAG @ dag @ LiL2006 Serial 800  
Permanent link to this record
 

 
Author (down) Volkmar Frinken; Markus Baumgartner; Andreas Fischer; Horst Bunke edit   pdf
isbn  openurl
  Title Semi-Supervised Learning for Cursive Handwriting Recognition using Keyword Spotting Type Conference Article
  Year 2012 Publication 13th International Conference on Frontiers in Handwriting Recognition Abbreviated Journal  
  Volume Issue Pages 49-54  
  Keywords  
  Abstract State-of-the-art handwriting recognition systems are learning-based systems that require large sets of training data. The creation of training data, and consequently the creation of a well-performing recognition system, requires therefore a substantial amount of human work. This can be reduced with semi-supervised learning, which uses unlabeled text lines for training as well. Current approaches estimate the correct transcription of the unlabeled data via handwriting recognition which is not only extremely demanding as far as computational costs are concerned but also requires a good model of the target language. In this paper, we propose a different approach that makes use of keyword spotting, which is significantly faster and does not need any language model. In a set of experiments we demonstrate its superiority over existing approaches.  
  Address Bari, Italy  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 10.1109/ICFHR.2012.268 ISBN 978-1-4673-2262-1 Medium  
  Area Expedition Conference ICFHR  
  Notes DAG Approved no  
  Call Number Admin @ si @ FBF2012 Serial 2055  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: