toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Lluis Gomez; Dimosthenis Karatzas edit   pdf
doi  openurl
  Title MSER-based Real-Time Text Detection and Tracking Type Conference Article
  Year 2014 Publication 22nd International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 3110 - 3115  
  Keywords  
  Abstract We present a hybrid algorithm for detection and tracking of text in natural scenes that goes beyond the fulldetection approaches in terms of time performance optimization.
A state-of-the-art scene text detection module based on Maximally Stable Extremal Regions (MSER) is used to detect text asynchronously, while on a separate thread detected text objects are tracked by MSER propagation. The cooperation of these two modules yields real time video processing at high frame rates even on low-resource devices.
 
  Address (up) Stockholm; August 2014  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-4651 ISBN Medium  
  Area Expedition Conference ICPR  
  Notes DAG; 600.056; 601.158; 601.197; 600.077 Approved no  
  Call Number Admin @ si @ GoK2014a Serial 2492  
Permanent link to this record
 

 
Author Fernando Vilariño; Dimosthenis Karatzas; Alberto Valcarce edit  openurl
  Title Libraries as New Innovation Hubs: The Library Living Lab Type Conference Article
  Year 2018 Publication 30th ISPIM Innovation Conference Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Libraries are in deep transformation both in EU and around the world, and they are thriving within a great window of opportunity for innovation. In this paper, we show how the Library Living Lab in Barcelona participated of this changing scenario and contributed to create the Bibliolab program, where more than 200 public libraries give voice to their users in a global user-centric innovation initiative, using technology as enabling factor. The Library Living Lab is a real 4-helix implementation where Universities, Research Centers, Public Administration, Companies and the Neighbors are joint together to explore how technology transforms the cultural experience of people. This case is an example of scalability and provides reference tools for policy making, sustainability, user engage methodologies and governance. We provide specific examples of new prototypes and services that help to understand how to redefine the role of the Library as a real hub for social innovation.  
  Address (up) Stockholm; May 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ISPIM  
  Notes DAG; MV; 600.097; 600.121; 600.129;SIAI Approved no  
  Call Number Admin @ si @ VKV2018b Serial 3154  
Permanent link to this record
 

 
Author Hongxing Gao; Marçal Rusiñol; Dimosthenis Karatzas; Josep Llados edit   pdf
doi  openurl
  Title Embedding Document Structure to Bag-of-Words through Pair-wise Stable Key-regions Type Conference Article
  Year 2014 Publication 22nd International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 2903 - 2908  
  Keywords  
  Abstract Since the document structure carries valuable discriminative information, plenty of efforts have been made for extracting and understanding document structure among which layout analysis approaches are the most commonly used. In this paper, Distance Transform based MSER (DTMSER) is employed to efficiently extract the document structure as a dendrogram of key-regions which roughly correspond to structural elements such as characters, words and paragraphs. Inspired by the Bag
of Words (BoW) framework, we propose an efficient method for structural document matching by representing the document image as a histogram of key-region pairs encoding structural relationships.
Applied to the scenario of document image retrieval, experimental results demonstrate a remarkable improvement when comparing the proposed method with typical BoW and pyramidal BoW methods.
 
  Address (up) Stockholm; Sweden; August 2014  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICPR  
  Notes DAG; 600.056; 600.061; 600.077 Approved no  
  Call Number Admin @ si @ GRK2014b Serial 2497  
Permanent link to this record
 

 
Author P. Wang; V. Eglin; C. Garcia; C. Largeron; Josep Llados; Alicia Fornes edit   pdf
doi  openurl
  Title A Coarse-to-Fine Word Spotting Approach for Historical Handwritten Documents Based on Graph Embedding and Graph Edit Distance Type Conference Article
  Year 2014 Publication 22nd International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 3074 - 3079  
  Keywords word spotting; coarse-to-fine mechamism; graphbased representation; graph embedding; graph edit distance  
  Abstract Effective information retrieval on handwritten document images has always been a challenging task, especially historical ones. In the paper, we propose a coarse-to-fine handwritten word spotting approach based on graph representation. The presented model comprises both the topological and morphological signatures of the handwriting. Skeleton-based graphs with the Shape Context labelled vertexes are established for connected components. Each word image is represented as a sequence of graphs. Aiming at developing a practical and efficient word spotting approach for large-scale historical handwritten documents, a fast and coarse comparison is first applied to prune the regions that are not similar to the query based on the graph embedding methodology. Afterwards, the query and regions of interest are compared by graph edit distance based on the Dynamic Time Warping alignment. The proposed approach is evaluated on a public dataset containing 50 pages of historical marriage license records. The results show that the proposed approach achieves a compromise between efficiency and accuracy.  
  Address (up) Stockholm; Sweden; August 2014  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-4651 ISBN Medium  
  Area Expedition Conference ICPR  
  Notes DAG; 600.061; 602.006; 600.077 Approved no  
  Call Number Admin @ si @ WEG2014a Serial 2515  
Permanent link to this record
 

 
Author Lei Kang; Juan Ignacio Toledo; Pau Riba; Mauricio Villegas; Alicia Fornes; Marçal Rusiñol edit   pdf
url  openurl
  Title Convolve, Attend and Spell: An Attention-based Sequence-to-Sequence Model for Handwritten Word Recognition Type Conference Article
  Year 2018 Publication 40th German Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 459-472  
  Keywords  
  Abstract This paper proposes Convolve, Attend and Spell, an attention based sequence-to-sequence model for handwritten word recognition. The proposed architecture has three main parts: an encoder, consisting of a CNN and a bi-directional GRU, an attention mechanism devoted to focus on the pertinent features and a decoder formed by a one-directional GRU, able to spell the corresponding word, character by character. Compared with the recent state-of-the-art, our model achieves competitive results on the IAM dataset without needing any pre-processing step, predefined lexicon nor language model. Code and additional results are available in https://github.com/omni-us/research-seq2seq-HTR.  
  Address (up) Stuttgart; Germany; October 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference GCPR  
  Notes DAG; 600.097; 603.057; 302.065; 601.302; 600.084; 600.121; 600.129 Approved no  
  Call Number Admin @ si @ KTR2018 Serial 3167  
Permanent link to this record
 

 
Author Jon Almazan; Albert Gordo; Alicia Fornes; Ernest Valveny edit   pdf
doi  openurl
  Title Handwritten Word Spotting with Corrected Attributes Type Conference Article
  Year 2013 Publication 15th IEEE International Conference on Computer Vision Abbreviated Journal  
  Volume Issue Pages 1017-1024  
  Keywords  
  Abstract We propose an approach to multi-writer word spotting, where the goal is to find a query word in a dataset comprised of document images. We propose an attributes-based approach that leads to a low-dimensional, fixed-length representation of the word images that is fast to compute and, especially, fast to compare. This approach naturally leads to an unified representation of word images and strings, which seamlessly allows one to indistinctly perform query-by-example, where the query is an image, and query-by-string, where the query is a string. We also propose a calibration scheme to correct the attributes scores based on Canonical Correlation Analysis that greatly improves the results on a challenging dataset. We test our approach on two public datasets showing state-of-the-art results.  
  Address (up) Sydney; Australia; December 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-5499 ISBN Medium  
  Area Expedition Conference ICCV  
  Notes DAG Approved no  
  Call Number Admin @ si @ AGF2013 Serial 2327  
Permanent link to this record
 

 
Author Raul Gomez; Ali Furkan Biten; Lluis Gomez; Jaume Gibert; Marçal Rusiñol; Dimosthenis Karatzas edit   pdf
url  doi
openurl 
  Title Selective Style Transfer for Text Type Conference Article
  Year 2019 Publication 15th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 805-812  
  Keywords transfer; text style transfer; data augmentation; scene text detection  
  Abstract This paper explores the possibilities of image style transfer applied to text maintaining the original transcriptions. Results on different text domains (scene text, machine printed text and handwritten text) and cross-modal results demonstrate that this is feasible, and open different research lines. Furthermore, two architectures for selective style transfer, which means
transferring style to only desired image pixels, are proposed. Finally, scene text selective style transfer is evaluated as a data augmentation technique to expand scene text detection datasets, resulting in a boost of text detectors performance. Our implementation of the described models is publicly available.
 
  Address (up) Sydney; Australia; September 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.129; 600.135; 601.338; 601.310; 600.121 Approved no  
  Call Number GBG2019 Serial 3265  
Permanent link to this record
 

 
Author Ali Furkan Biten; Ruben Tito; Andres Mafla; Lluis Gomez; Marçal Rusiñol; M. Mathew; C.V. Jawahar; Ernest Valveny; Dimosthenis Karatzas edit   pdf
url  openurl
  Title ICDAR 2019 Competition on Scene Text Visual Question Answering Type Conference Article
  Year 2019 Publication 3rd Workshop on Closing the Loop Between Vision and Language, in conjunction with ICCV2019 Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract This paper presents final results of ICDAR 2019 Scene Text Visual Question Answering competition (ST-VQA). ST-VQA introduces an important aspect that is not addressed
by any Visual Question Answering system up to date, namely the incorporation of scene text to answer questions asked about an image. The competition introduces a new dataset comprising 23, 038 images annotated with 31, 791 question / answer pairs where the answer is always grounded on text instances present in the image. The images are taken from 7 different public computer vision datasets, covering a wide range of scenarios.
The competition was structured in three tasks of increasing difficulty, that require reading the text in a scene and understanding it in the context of the scene, to correctly answer a given question. A novel evaluation metric is presented, which elegantly assesses both key capabilities expected from an optimal model: text recognition and image understanding. A detailed analysis of results from different participants is showcased, which provides insight into the current capabilities of VQA systems that can read. We firmly believe the dataset proposed in this challenge will be an important milestone to consider towards a path of more robust and general models that
can exploit scene text to achieve holistic image understanding.
 
  Address (up) Sydney; Australia; September 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CLVL  
  Notes DAG; 600.129; 601.338; 600.135; 600.121 Approved no  
  Call Number Admin @ si @ BTM2019a Serial 3284  
Permanent link to this record
 

 
Author Ali Furkan Biten; Ruben Tito; Andres Mafla; Lluis Gomez; Marçal Rusiñol; M. Mathew; C.V. Jawahar; Ernest Valveny; Dimosthenis Karatzas edit   pdf
url  doi
openurl 
  Title ICDAR 2019 Competition on Scene Text Visual Question Answering Type Conference Article
  Year 2019 Publication 15th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 1563-1570  
  Keywords  
  Abstract This paper presents final results of ICDAR 2019 Scene Text Visual Question Answering competition (ST-VQA). ST-VQA introduces an important aspect that is not addressed by any Visual Question Answering system up to date, namely the incorporation of scene text to answer questions asked about an image. The competition introduces a new dataset comprising 23,038 images annotated with 31,791 question / answer pairs where the answer is always grounded on text instances present in the image. The images are taken from 7 different public computer vision datasets, covering a wide range of scenarios. The competition was structured in three tasks of increasing difficulty, that require reading the text in a scene and understanding it in the context of the scene, to correctly answer a given question. A novel evaluation metric is presented, which elegantly assesses both key capabilities expected from an optimal model: text recognition and image understanding. A detailed analysis of results from different participants is showcased, which provides insight into the current capabilities of VQA systems that can read. We firmly believe the dataset proposed in this challenge will be an important milestone to consider towards a path of more robust and general models that can exploit scene text to achieve holistic image understanding.  
  Address (up) Sydney; Australia; September 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.129; 601.338; 600.121 Approved no  
  Call Number Admin @ si @ BTM2019c Serial 3286  
Permanent link to this record
 

 
Author Rui Zhang; Yongsheng Zhou; Qianyi Jiang; Qi Song; Nan Li; Kai Zhou; Lei Wang; Dong Wang; Minghui Liao; Mingkun Yang; Xiang Bai; Baoguang Shi; Dimosthenis Karatzas; Shijian Lu; CV Jawahar edit   pdf
url  doi
openurl 
  Title ICDAR 2019 Robust Reading Challenge on Reading Chinese Text on Signboard Type Conference Article
  Year 2019 Publication 15th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 1577-1581  
  Keywords  
  Abstract Chinese scene text reading is one of the most challenging problems in computer vision and has attracted great interest. Different from English text, Chinese has more than 6000 commonly used characters and Chinesecharacters can be arranged in various layouts with numerous fonts. The Chinese signboards in street view are a good choice for Chinese scene text images since they have different backgrounds, fonts and layouts. We organized a competition called ICDAR2019-ReCTS, which mainly focuses on reading Chinese text on signboard. This report presents the final results of the competition. A large-scale dataset of 25,000 annotated signboard images, in which all the text lines and characters are annotated with locations and transcriptions, were released. Four tasks, namely character recognition, text line recognition, text line detection and end-to-end recognition were set up. Besides, considering the Chinese text ambiguity issue, we proposed a multi ground truth (multi-GT) evaluation method to make evaluation fairer. The competition started on March 1, 2019 and ended on April 30, 2019. 262 submissions from 46 teams are received. Most of the participants come from universities, research institutes, and tech companies in China. There are also some participants from the United States, Australia, Singapore, and Korea. 21 teams submit results for Task 1, 23 teams submit results for Task 2, 24 teams submit results for Task 3, and 13 teams submit results for Task 4.  
  Address (up) Sydney; Australia; September 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.129; 600.121 Approved no  
  Call Number Admin @ si @ LZZ2019 Serial 3335  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: