|
Records |
Links |
|
Author |
Josep Llados; Jaime Lopez-Krahe; Enric Marti |


|
|
Title |
Hand drawn document understanding using the straight line Hough transform and graph matching |
Type |
Conference Article |
|
Year |
1996 |
Publication |
Proceedings of the 13th International Pattern Recognition Conference (ICPR’96) |
Abbreviated Journal |
|
|
|
Volume |
2 |
Issue |
|
Pages |
497-501 |
|
|
Keywords |
|
|
|
Abstract  |
This paper presents a system to understand hand drawn architectural drawings in a CAD environment. The procedure is to identify in a floor plan the building elements, stored in a library of patterns, and their spatial relationships. The vectorized input document and the patterns to recognize are represented by attributed graphs. To recognize the patterns as such, we apply a structural approach based on subgraph isomorphism techniques. In spite of their value, graph matching techniques do not recognize adequately those building elements characterized by hatching patterns, i.e. walls. Here we focus on the recognition of hatching patterns and develop a straight line Hough transform based method in order to detect the regions filled in with parallel straight fines. This allows not only to recognize filling patterns, but it actually reduces the computational load associated with the subgraph isomorphism computation. The result is that the document can be redrawn by editing all the patterns recognized |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
Vienna , Austria |
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG;IAM; |
Approved |
no |
|
|
Call Number |
IAM @ iam @ LLM1996 |
Serial |
1579 |
|
Permanent link to this record |
|
|
|
|
Author |
Lluis Pere de las Heras; Ernest Valveny; Gemma Sanchez |

|
|
Title |
Combining structural and statistical strategies for unsupervised wall detection in floor plans |
Type |
Conference Article |
|
Year |
2013 |
Publication |
10th IAPR International Workshop on Graphics Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract  |
This paper presents an evolution of the first unsupervised wall segmentation method in floor plans, that was presented by the authors in [1]. This first approach, contrarily to the existing ones, is able to segment walls independently to their notation and without the need of any pre-annotated data
to learn their visual appearance. Despite the good performance of the first approach, some specific cases, such as curved shaped walls, were not correctly segmented since they do not agree the strict structural assumptions that guide the whole methodology in order to be able to learn, in an unsupervised way, the structure of a wall. In this paper, we refine this strategy by dividing the
process in two steps. In a first step, potential wall segments are extracted unsupervisedly using a modification of [1], by restricting even more the areas considered as walls in a first moment. In a second step, these segments are used to learn and spot lost instances based on a modified version of [2], also presented by the authors. The presented combined method have been tested on
4 datasets with different notations and compared with the stateof-the-art applyed on the same datasets. The results show its adaptability to different wall notations and shapes, significantly outperforming the original approach. |
|
|
Address |
Bethlehem; PA; USA; August 2013 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
GREC |
|
|
Notes |
DAG; 600.045 |
Approved |
no |
|
|
Call Number |
Admin @ si @ HVS2013a |
Serial |
2321 |
|
Permanent link to this record |
|
|
|
|
Author |
David Fernandez; Jon Almazan; Nuria Cirera; Alicia Fornes; Josep Llados |


|
|
Title |
BH2M: the Barcelona Historical Handwritten Marriages database |
Type |
Conference Article |
|
Year |
2014 |
Publication |
22nd International Conference on Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
256 - 261 |
|
|
Keywords |
|
|
|
Abstract  |
This paper presents an image database of historical handwritten marriages records stored in the archives of Barcelona cathedral, and the corresponding meta-data addressed to evaluate the performance of document analysis algorithms. The contribution of this paper is twofold. First, it presents a complete ground truth which covers the whole pipeline of handwriting
recognition research, from layout analysis to recognition and understanding. Second, it is the first dataset in the emerging area of genealogical document analysis, where documents are manuscripts pseudo-structured with specific lexicons and the interest is beyond pure transcriptions but context dependent. |
|
|
Address |
Creete Island; Grecia; September 2014 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1051-4651 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICPR |
|
|
Notes |
DAG; 600.056; 600.061; 602.006; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ FAC2014 |
Serial |
2461 |
|
Permanent link to this record |
|
|
|
|
Author |
Agnes Borras; Josep Llados |


|
|
Title |
Object Image Retrieval by Shape Content in Complex Scenes Using Geometric Constraints |
Type |
Book Chapter |
|
Year |
2005 |
Publication |
Pattern Recognition And Image Analysis |
Abbreviated Journal |
LNCS |
|
|
Volume |
3522 |
Issue |
|
Pages |
325–332 |
|
|
Keywords |
|
|
|
Abstract  |
This paper presents an image retrieval system based on 2D shape information. Query shape objects and database images are repre- sented by polygonal approximations of their contours. Afterwards they are encoded, using geometric features, in terms of predefined structures. Shapes are then located in database images by a voting procedure on the spatial domain. Then an alignment matching provides a probability value to rank de database image in the retrieval result. The method al- lows to detect a query object in database images even when they contain complex scenes. Also the shape matching tolerates partial occlusions and affine transformations as translation, rotation or scaling. |
|
|
Address |
Estoril (Portugal) |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Link |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; |
Approved |
no |
|
|
Call Number |
DAG @ dag @ BoL2005; IAM @ iam @ BoL2005 |
Serial |
556 |
|
Permanent link to this record |
|
|
|
|
Author |
Ali Furkan Biten; Ruben Tito; Andres Mafla; Lluis Gomez; Marçal Rusiñol; M. Mathew; C.V. Jawahar; Ernest Valveny; Dimosthenis Karatzas |


|
|
Title |
ICDAR 2019 Competition on Scene Text Visual Question Answering |
Type |
Conference Article |
|
Year |
2019 |
Publication |
3rd Workshop on Closing the Loop Between Vision and Language, in conjunction with ICCV2019 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract  |
This paper presents final results of ICDAR 2019 Scene Text Visual Question Answering competition (ST-VQA). ST-VQA introduces an important aspect that is not addressed
by any Visual Question Answering system up to date, namely the incorporation of scene text to answer questions asked about an image. The competition introduces a new dataset comprising 23, 038 images annotated with 31, 791 question / answer pairs where the answer is always grounded on text instances present in the image. The images are taken from 7 different public computer vision datasets, covering a wide range of scenarios.
The competition was structured in three tasks of increasing difficulty, that require reading the text in a scene and understanding it in the context of the scene, to correctly answer a given question. A novel evaluation metric is presented, which elegantly assesses both key capabilities expected from an optimal model: text recognition and image understanding. A detailed analysis of results from different participants is showcased, which provides insight into the current capabilities of VQA systems that can read. We firmly believe the dataset proposed in this challenge will be an important milestone to consider towards a path of more robust and general models that
can exploit scene text to achieve holistic image understanding. |
|
|
Address |
Sydney; Australia; September 2019 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CLVL |
|
|
Notes |
DAG; 600.129; 601.338; 600.135; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ BTM2019a |
Serial |
3284 |
|
Permanent link to this record |
|
|
|
|
Author |
Ali Furkan Biten; Ruben Tito; Andres Mafla; Lluis Gomez; Marçal Rusiñol; M. Mathew; C.V. Jawahar; Ernest Valveny; Dimosthenis Karatzas |


|
|
Title |
ICDAR 2019 Competition on Scene Text Visual Question Answering |
Type |
Conference Article |
|
Year |
2019 |
Publication |
15th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1563-1570 |
|
|
Keywords |
|
|
|
Abstract  |
This paper presents final results of ICDAR 2019 Scene Text Visual Question Answering competition (ST-VQA). ST-VQA introduces an important aspect that is not addressed by any Visual Question Answering system up to date, namely the incorporation of scene text to answer questions asked about an image. The competition introduces a new dataset comprising 23,038 images annotated with 31,791 question / answer pairs where the answer is always grounded on text instances present in the image. The images are taken from 7 different public computer vision datasets, covering a wide range of scenarios. The competition was structured in three tasks of increasing difficulty, that require reading the text in a scene and understanding it in the context of the scene, to correctly answer a given question. A novel evaluation metric is presented, which elegantly assesses both key capabilities expected from an optimal model: text recognition and image understanding. A detailed analysis of results from different participants is showcased, which provides insight into the current capabilities of VQA systems that can read. We firmly believe the dataset proposed in this challenge will be an important milestone to consider towards a path of more robust and general models that can exploit scene text to achieve holistic image understanding. |
|
|
Address |
Sydney; Australia; September 2019 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.129; 601.338; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ BTM2019c |
Serial |
3286 |
|
Permanent link to this record |
|
|
|
|
Author |
Sergi Garcia Bordils; Andres Mafla; Ali Furkan Biten; Oren Nuriel; Aviad Aberdam; Shai Mazor; Ron Litman; Dimosthenis Karatzas |


|
|
Title |
Out-of-Vocabulary Challenge Report |
Type |
Conference Article |
|
Year |
2022 |
Publication |
Proceedings European Conference on Computer Vision Workshops |
Abbreviated Journal |
|
|
|
Volume |
13804 |
Issue |
|
Pages |
359–375 |
|
|
Keywords |
|
|
|
Abstract  |
This paper presents final results of the Out-Of-Vocabulary 2022 (OOV) challenge. The OOV contest introduces an important aspect that is not commonly studied by Optical Character Recognition (OCR) models, namely, the recognition of unseen scene text instances at training time. The competition compiles a collection of public scene text datasets comprising of 326,385 images with 4,864,405 scene text instances, thus covering a wide range of data distributions. A new and independent validation and test set is formed with scene text instances that are out of vocabulary at training time. The competition was structured in two tasks, end-to-end and cropped scene text recognition respectively. A thorough analysis of results from baselines and different participants is presented. Interestingly, current state-of-the-art models show a significant performance gap under the newly studied setting. We conclude that the OOV dataset proposed in this challenge will be an essential area to be explored in order to develop scene text models that achieve more robust and generalized predictions. |
|
|
Address |
Tel-Aviv; Israel; October 2022 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ECCVW |
|
|
Notes |
DAG; 600.155; 302.105; 611.002 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GMB2022 |
Serial |
3771 |
|
Permanent link to this record |
|
|
|
|
Author |
Minesh Mathew; Ruben Tito; Dimosthenis Karatzas; R.Manmatha; C.V. Jawahar |


|
|
Title |
Document Visual Question Answering Challenge 2020 |
Type |
Conference Article |
|
Year |
2020 |
Publication |
33rd IEEE Conference on Computer Vision and Pattern Recognition – Short paper |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract  |
This paper presents results of Document Visual Question Answering Challenge organized as part of “Text and Documents in the Deep Learning Era” workshop, in CVPR 2020. The challenge introduces a new problem – Visual Question Answering on document images. The challenge comprised two tasks. The first task concerns with asking questions on a single document image. On the other hand, the second task is set as a retrieval task where the question is posed over a collection of images. For the task 1 a new dataset is introduced comprising 50,000 questions-answer(s) pairs defined over 12,767 document images. For task 2 another dataset has been created comprising 20 questions over 14,362 document images which share the same document template. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CVPR |
|
|
Notes |
DAG; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ MTK2020 |
Serial |
3558 |
|
Permanent link to this record |
|
|
|
|
Author |
Marçal Rusiñol; J. Chazalon; Katerine Diaz |


|
|
Title |
Augmented Songbook: an Augmented Reality Educational Application for Raising Music Awareness |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Multimedia Tools and Applications |
Abbreviated Journal |
MTAP |
|
|
Volume |
77 |
Issue |
11 |
Pages |
13773-13798 |
|
|
Keywords |
Augmented reality; Document image matching; Educational applications |
|
|
Abstract  |
This paper presents the development of an Augmented Reality mobile application which aims at sensibilizing young children to abstract concepts of music. Such concepts are, for instance, the musical notation or the idea of rhythm. Recent studies in Augmented Reality for education suggest that such technologies have multiple benefits for students, including younger ones. As mobile document image acquisition and processing gains maturity on mobile platforms, we explore how it is possible to build a markerless and real-time application to augment the physical documents with didactic animations and interactive virtual content. Given a standard image processing pipeline, we compare the performance of different local descriptors at two key stages of the process. Results suggest alternatives to the SIFT local descriptors, regarding result quality and computational efficiency, both for document model identification and perspective transform estimation. All experiments are performed on an original and public dataset we introduce here. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; ADAS; 600.084; 600.121; 600.118; 600.129 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RCD2018 |
Serial |
2996 |
|
Permanent link to this record |
|
|
|
|
Author |
Dimosthenis Karatzas; Sergi Robles; Joan Mas; Farshad Nourbakhsh; Partha Pratim Roy |


|
|
Title |
ICDAR 2011 Robust Reading Competition – Challege 1: Reading Text in Born-Digital Images (Web and Email) |
Type |
Conference Article |
|
Year |
2011 |
Publication |
11th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1485-1490 |
|
|
Keywords |
|
|
|
Abstract  |
This paper presents the results of the first Challenge of ICDAR 2011 Robust Reading Competition. Challenge 1 is focused on the extraction of text from born-digital images, specifically from images found in Web pages and emails. The challenge was organized in terms of three tasks that look at different stages of the process: text localization, text segmentation and word recognition. In this paper we present the results of the challenge for all three tasks, and make an open call for continuous participation outside the context of ICDAR 2011. |
|
|
Address |
Beijing, China |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1520-5363 |
ISBN |
978-1-4577-1350-7 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ KRM2011 |
Serial |
1793 |
|
Permanent link to this record |