|
Records |
Links |
|
Author |
Jaume Gibert; Ernest Valveny |


|
|
Title |
Graph Embedding based on Nodes Attributes Representatives and a Graph of Words Representation. |
Type |
Conference Article |
|
Year |
2010 |
Publication |
13th International worshop on structural and syntactic pattern recognition and 8th international worshop on statistical pattern recognition |
Abbreviated Journal |
|
|
|
Volume |
6218 |
Issue |
|
Pages |
223–232 |
|
|
Keywords |
|
|
|
Abstract  |
Although graph embedding has recently been used to extend statistical pattern recognition techniques to the graph domain, some existing embeddings are usually computationally expensive as they rely on classical graph-based operations. In this paper we present a new way to embed graphs into vector spaces by first encapsulating the information stored in the original graph under another graph representation by clustering the attributes of the graphs to be processed. This new representation makes the association of graphs to vectors an easy step by just arranging both node attributes and the adjacency matrix in the form of vectors. To test our method, we use two different databases of graphs whose nodes attributes are of different nature. A comparison with a reference method permits to show that this new embedding is better in terms of classification rates, while being much more faster. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Berlin Heidelberg |
Place of Publication |
|
Editor |
In E.R. Hancock, R.C. Wilson, T. Windeatt, I. Ulusoy and F. Escolano, |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0302-9743 |
ISBN |
978-3-642-14979-5 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
S+SSPR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ GiV2010 |
Serial |
1416 |
|
Permanent link to this record |
|
|
|
|
Author |
L.Tarazon; D. Perez; N. Serrano; V. Alabau; Oriol Ramos Terrades; A. Sanchis; A. Juan |


|
|
Title |
Confidence Measures for Error Correction in Interactive Transcription of Handwritten Text |
Type |
Conference Article |
|
Year |
2009 |
Publication |
15th International Conference on Image Analysis and Processing |
Abbreviated Journal |
|
|
|
Volume |
5716 |
Issue |
|
Pages |
567-574 |
|
|
Keywords |
|
|
|
Abstract  |
An effective approach to transcribe old text documents is to follow an interactive-predictive paradigm in which both, the system is guided by the human supervisor, and the supervisor is assisted by the system to complete the transcription task as efficiently as possible. In this paper, we focus on a particular system prototype called GIDOC, which can be seen as a first attempt to provide user-friendly, integrated support for interactive-predictive page layout analysis, text line detection and handwritten text transcription. More specifically, we focus on the handwriting recognition part of GIDOC, for which we propose the use of confidence measures to guide the human supervisor in locating possible system errors and deciding how to proceed. Empirical results are reported on two datasets showing that a word error rate not larger than a 10% can be achieved by only checking the 32% of words that are recognised with less confidence. |
|
|
Address |
Vietri sul Mare, Italy |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Berlin Heidelberg |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0302-9743 |
ISBN |
978-3-642-04145-7 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICIAP |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ TPS2009 |
Serial |
1871 |
|
Permanent link to this record |
|
|
|
|
Author |
Kaida Xiao; Chenyang Fu; Dimosthenis Karatzas; Sophie Wuerger |

|
|
Title |
Visual Gamma Correction for LCD Displays |
Type |
Journal Article |
|
Year |
2011 |
Publication |
Displays |
Abbreviated Journal |
DIS |
|
|
Volume |
32 |
Issue |
1 |
Pages |
17-23 |
|
|
Keywords |
Display calibration; Psychophysics ; Perceptual; Visual gamma correction; Luminance matching; Observer-based calibration |
|
|
Abstract  |
An improved method for visual gamma correction is developed for LCD displays to increase the accuracy of digital colour reproduction. Rather than utilising a photometric measurement device, we use observ- ers’ visual luminance judgements for gamma correction. Eight half tone patterns were designed to gen- erate relative luminances from 1/9 to 8/9 for each colour channel. A psychophysical experiment was conducted on an LCD display to find the digital signals corresponding to each relative luminance by visually matching the half-tone background to a uniform colour patch. Both inter- and intra-observer vari- ability for the eight luminance matches in each channel were assessed and the luminance matches proved to be consistent across observers (DE00 < 3.5) and repeatable (DE00 < 2.2). Based on the individual observer judgements, the display opto-electronic transfer function (OETF) was estimated by using either a 3rd order polynomial regression or linear interpolation for each colour channel. The performance of the proposed method is evaluated by predicting the CIE tristimulus values of a set of coloured patches (using the observer-based OETFs) and comparing them to the expected CIE tristimulus values (using the OETF obtained from spectro-radiometric luminance measurements). The resulting colour differences range from 2 to 4.6 DE00. We conclude that this observer-based method of visual gamma correction is useful to estimate the OETF for LCD displays. Its major advantage is that no particular functional relationship between digital inputs and luminance outputs has to be assumed. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Elsevier |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ XFK2011 |
Serial |
1815 |
|
Permanent link to this record |
|
|
|
|
Author |
Lluis Pere de las Heras; Joan Mas; Gemma Sanchez; Ernest Valveny |


|
|
Title |
Notation-invariant patch-based wall detector in architectural floor plans |
Type |
Book Chapter |
|
Year |
2013 |
Publication |
Graphics Recognition. New Trends and Challenges |
Abbreviated Journal |
|
|
|
Volume |
7423 |
Issue |
|
Pages |
79--88 |
|
|
Keywords |
|
|
|
Abstract  |
Architectural floor plans exhibit a large variability in notation. Therefore, segmenting and identifying the elements of any kind of plan becomes a challenging task for approaches based on grouping structural primitives obtained by vectorization. Recently, a patch-based segmentation method working at pixel level and relying on the construction of a visual vocabulary has been proposed in [1], showing its adaptability to different notations by automatically learning the visual appearance of the elements in each different notation. This paper presents an evolution of that previous work, after analyzing and testing several alternatives for each of the different steps of the method: Firstly, an automatic plan-size normalization process is done. Secondly we evaluate different features to obtain the description of every patch. Thirdly, we train an SVM classifier to obtain the category of every patch instead of constructing a visual vocabulary. These variations of the method have been tested for wall detection on two datasets of architectural floor plans with different notations. After studying in deep each of the steps in the process pipeline, we are able to find the best system configuration, which highly outperforms the results on wall segmentation obtained by the original paper. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Berlin Heidelberg |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0302-9743 |
ISBN |
978-3-642-36823-3 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.045; 600.056; 605.203 |
Approved |
no |
|
|
Call Number |
Admin @ si @ HMS2013 |
Serial |
2322 |
|
Permanent link to this record |
|
|
|
|
Author |
Lluis Pere de las Heras; Joan Mas; Gemma Sanchez; Ernest Valveny |

|
|
Title |
Descriptor-based Svm Wall Detector |
Type |
Conference Article |
|
Year |
2011 |
Publication |
9th International Workshop on Graphic Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract  |
Architectural floorplans exhibit a large variability in notation. Therefore, segmenting and identifying the elements of any kind of plan becomes a challenging task for approaches based on grouping structural primitives obtained by vectorization. Recently, a patch-based segmentation method working at pixel level and relying on the construction of a visual vocabulary has been proposed showing its adaptability to different notations by automatically learning the visual appearance of the elements in each different notation. In this paper we describe an evolution of this new approach in two directions: firstly we evaluate different features to obtain the description of every patch. Secondly, we train an SVM classifier to obtain the category of every patch instead of constructing a visual vocabulary. These modifications of the method have been tested for wall detection on two datasets of architectural floorplans with different notations and compared with the results obtained with the original approach. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
GREC |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ HMS2011b |
Serial |
1819 |
|
Permanent link to this record |
|
|
|
|
Author |
Suman Ghosh; Ernest Valveny |


|
|
Title |
Visual attention models for scene text recognition |
Type |
Conference Article |
|
Year |
2017 |
Publication |
14th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract  |
arXiv:1706.01487
In this paper we propose an approach to lexicon-free recognition of text in scene images. Our approach relies on a LSTM-based soft visual attention model learned from convolutional features. A set of feature vectors are derived from an intermediate convolutional layer corresponding to different areas of the image. This permits encoding of spatial information into the image representation. In this way, the framework is able to learn how to selectively focus on different parts of the image. At every time step the recognizer emits one character using a weighted combination of the convolutional feature vectors according to the learned attention model. Training can be done end-to-end using only word level annotations. In addition, we show that modifying the beam search algorithm by integrating an explicit language model leads to significantly better recognition results. We validate the performance of our approach on standard SVT and ICDAR'03 scene text datasets, showing state-of-the-art performance in unconstrained text recognition. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GhV2017b |
Serial |
3080 |
|
Permanent link to this record |
|
|
|
|
Author |
Suman Ghosh; Ernest Valveny |


|
|
Title |
R-PHOC: Segmentation-Free Word Spotting using CNN |
Type |
Conference Article |
|
Year |
2017 |
Publication |
14th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
Convolutional neural network; Image segmentation; Artificial neural network; Nearest neighbor search |
|
|
Abstract  |
arXiv:1707.01294
This paper proposes a region based convolutional neural network for segmentation-free word spotting. Our network takes as input an image and a set of word candidate bound- ing boxes and embeds all bounding boxes into an embedding space, where word spotting can be casted as a simple nearest neighbour search between the query representation and each of the candidate bounding boxes. We make use of PHOC embedding as it has previously achieved significant success in segmentation- based word spotting. Word candidates are generated using a simple procedure based on grouping connected components using some spatial constraints. Experiments show that R-PHOC which operates on images directly can improve the current state-of- the-art in the standard GW dataset and performs as good as PHOCNET in some cases designed for segmentation based word spotting. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GhV2017a |
Serial |
3079 |
|
Permanent link to this record |
|
|
|
|
Author |
J. Chazalon; P. Gomez-Kramer; Jean-Christophe Burie; M.Coustaty; S.Eskenazi; Muhammad Muzzamil Luqman; Nibal Nayef; Marçal Rusiñol; N. Sidere; Jean-Marc Ogier |


|
|
Title |
SmartDoc 2017 Video Capture: Mobile Document Acquisition in Video Mode |
Type |
Conference Article |
|
Year |
2017 |
Publication |
1st International Workshop on Open Services and Tools for Document Analysis |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract  |
As mobile document acquisition using smartphones is getting more and more common, along with the continuous improvement of mobile devices (both in terms of computing power and image quality), we can wonder to which extent mobile phones can replace desktop scanners. Modern applications can cope with perspective distortion and normalize the contrast of a document page captured with a smartphone, and in some cases like bottle labels or posters, smartphones even have the advantage of allowing the acquisition of non-flat or large documents. However, several cases remain hard to handle, such as reflective documents (identity cards, badges, glossy magazine cover, etc.) or large documents for which some regions require an important amount of detail. This paper introduces the SmartDoc 2017 benchmark (named “SmartDoc Video Capture”), which aims at
assessing whether capturing documents using the video mode of a smartphone could solve those issues. The task under evaluation is both a stitching and a reconstruction problem, as the user can move the device over different parts of the document to capture details or try to erase highlights. The material released consists of a dataset, an evaluation method and the associated tool, a sample method, and the tools required to extend the dataset. All the components are released publicly under very permissive licenses, and we particularly cared about maximizing the ease of
understanding, usage and improvement. |
|
|
Address |
Kyoto; Japan; November 2017 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR-OST |
|
|
Notes |
DAG; 600.084; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ CGB2017 |
Serial |
2997 |
|
Permanent link to this record |
|
|
|
|
Author |
Asma Bensalah; Jialuo Chen; Alicia Fornes; Cristina Carmona_Duarte; Josep Llados; Miguel A. Ferrer |


|
|
Title |
Towards Stroke Patients' Upper-limb Automatic Motor Assessment Using Smartwatches. |
Type |
Conference Article |
|
Year |
2020 |
Publication |
International Workshop on Artificial Intelligence for Healthcare Applications |
Abbreviated Journal |
|
|
|
Volume |
12661 |
Issue |
|
Pages |
476-489 |
|
|
Keywords |
|
|
|
Abstract  |
Assessing the physical condition in rehabilitation scenarios is a challenging problem, since it involves Human Activity Recognition (HAR) and kinematic analysis methods. In addition, the difficulties increase in unconstrained rehabilitation scenarios, which are much closer to the real use cases. In particular, our aim is to design an upper-limb assessment pipeline for stroke patients using smartwatches. We focus on the HAR task, as it is the first part of the assessing pipeline. Our main target is to automatically detect and recognize four key movements inspired by the Fugl-Meyer assessment scale, which are performed in both constrained and unconstrained scenarios. In addition to the application protocol and dataset, we propose two detection and classification baseline methods. We believe that the proposed framework, dataset and baseline results will serve to foster this research field. |
|
|
Address |
Virtual; January 2021 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICPRW |
|
|
Notes |
DAG; 600.121; 600.140; |
Approved |
no |
|
|
Call Number |
Admin @ si @ BCF2020 |
Serial |
3508 |
|
Permanent link to this record |
|
|
|
|
Author |
Asma Bensalah; Alicia Fornes; Cristina Carmona_Duarte; Josep Llados |


|
|
Title |
Easing Automatic Neurorehabilitation via Classification and Smoothness Analysis |
Type |
Conference Article |
|
Year |
2022 |
Publication |
Intertwining Graphonomics with Human Movements. 20th International Conference of the International Graphonomics Society, IGS 2022 |
Abbreviated Journal |
|
|
|
Volume |
13424 |
Issue |
|
Pages |
336-348 |
|
|
Keywords |
Neurorehabilitation; Upper-lim; Movement classification; Movement smoothness; Deep learning; Jerk |
|
|
Abstract  |
Assessing the quality of movements for post-stroke patients during the rehabilitation phase is vital given that there is no standard stroke rehabilitation plan for all the patients. In fact, it depends basically on the patient’s functional independence and its progress along the rehabilitation sessions. To tackle this challenge and make neurorehabilitation more agile, we propose an automatic assessment pipeline that starts by recognising patients’ movements by means of a shallow deep learning architecture, then measuring the movement quality using jerk measure and related measures. A particularity of this work is that the dataset used is clinically relevant, since it represents movements inspired from Fugl-Meyer a well common upper-limb clinical stroke assessment scale for stroke patients. We show that it is possible to detect the contrast between healthy and patients movements in terms of smoothness, besides achieving conclusions about the patients’ progress during the rehabilitation sessions that correspond to the clinicians’ findings about each case. |
|
|
Address |
June 7-9, 2022, Las Palmas de Gran Canaria, Spain |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
IGS |
|
|
Notes |
DAG; 600.121; 600.162; 602.230; 600.140 |
Approved |
no |
|
|
Call Number |
Admin @ si @ BFC2022 |
Serial |
3738 |
|
Permanent link to this record |