|
Records |
Links |
|
Author |
Ernest Valveny; Philippe Dosch |

|
|
Title |
Performance Evaluation of Symbol Recognition |
Type |
Book Chapter |
|
Year |
2004 |
Publication |
Document Analysis Systems |
Abbreviated Journal  |
LNCS |
|
|
Volume |
3163 |
Issue |
|
Pages |
354–365 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
Springer-Verlag |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
S. Marinai, A. Dengel (Eds.), |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
3-540-23060-2 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ VaD2004a |
Serial |
502 |
|
Permanent link to this record |
|
|
|
|
Author |
Agnes Borras; Josep Llados |


|
|
Title |
Object Image Retrieval by Shape Content in Complex Scenes Using Geometric Constraints |
Type |
Book Chapter |
|
Year |
2005 |
Publication |
Pattern Recognition And Image Analysis |
Abbreviated Journal  |
LNCS |
|
|
Volume |
3522 |
Issue |
|
Pages |
325–332 |
|
|
Keywords |
|
|
|
Abstract |
This paper presents an image retrieval system based on 2D shape information. Query shape objects and database images are repre- sented by polygonal approximations of their contours. Afterwards they are encoded, using geometric features, in terms of predefined structures. Shapes are then located in database images by a voting procedure on the spatial domain. Then an alignment matching provides a probability value to rank de database image in the retrieval result. The method al- lows to detect a query object in database images even when they contain complex scenes. Also the shape matching tolerates partial occlusions and affine transformations as translation, rotation or scaling. |
|
|
Address |
Estoril (Portugal) |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Link |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; |
Approved |
no |
|
|
Call Number |
DAG @ dag @ BoL2005; IAM @ iam @ BoL2005 |
Serial |
556 |
|
Permanent link to this record |
|
|
|
|
Author |
Agnes Borras; Josep Llados |


|
|
Title |
Similarity-Based Object Retrieval Using Appearance and Geometric Feature Combination |
Type |
Book Chapter |
|
Year |
2007 |
Publication |
3rd Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA 2007), J. Marti et al. (Eds.) LNCS 4477:113–120 |
Abbreviated Journal  |
LNCS |
|
|
Volume |
4478 |
Issue |
|
Pages |
33–39 |
|
|
Keywords |
|
|
|
Abstract |
This work presents a content-based image retrieval system of general purpose that deals with cluttered scenes containing a given query object. The system is flexible enough to handle with a single image of an object despite its rotation, translation and scale variations. The image content is divided in parts that are described with a combination of features based on geometrical and color properties. The idea behind the feature combination is to benefit from a fuzzy similarity computation that provides robustness and tolerance to the retrieval process. The features can be independently computed and the image parts can be easily indexed by using a table structure on every feature value. Finally a process inspired in the alignment strategies is used to check the coherence of the object parts found in a scene. Our work presents a system of easy implementation that uses an open set of features and can suit a wide variety of applications. |
|
|
Address |
Girona (Spain) |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-3-540-72848-1 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; |
Approved |
no |
|
|
Call Number |
DAG @ dag @ BoL2007a; IAM @ iam @ BoL2007a |
Serial |
776 |
|
Permanent link to this record |
|
|
|
|
Author |
Josep Llados; Ernest Valveny; Gemma Sanchez; Enric Marti |



|
|
Title |
Symbol recognition: current advances and perspectives |
Type |
Book Chapter |
|
Year |
2002 |
Publication |
Graphics Recognition Algorithms And Applications |
Abbreviated Journal  |
LNCS |
|
|
Volume |
2390 |
Issue |
|
Pages |
104-128 |
|
|
Keywords |
|
|
|
Abstract |
The recognition of symbols in graphic documents is an intensive research activity in the community of pattern recognition and document analysis. A key issue in the interpretation of maps, engineering drawings, diagrams, etc. is the recognition of domain dependent symbols according to a symbol database. In this work we first review the most outstanding symbol recognition methods from two different points of view: application domains and pattern recognition methods. In the second part of the paper, open and unaddressed problems involved in symbol recognition are described, analyzing their current state of art and discussing future research challenges. Thus, issues such as symbol representation, matching, segmentation, learning, scalability of recognition methods and performance evaluation are addressed in this work. Finally, we discuss the perspectives of symbol recognition concerning to new paradigms such as user interfaces in handheld computers or document database and WWW indexing by graphical content. |
|
|
Address |
London, UK |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer-Verlag |
Place of Publication |
|
Editor |
Dorothea Blostein and Young- Bin Kwon |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
Lecture Notes in Computer Science |
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
3-540-44066-6 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
GREC |
|
|
Notes |
DAG; IAM; |
Approved |
no |
|
|
Call Number |
IAM @ iam @ LVS2002 |
Serial |
1572 |
|
Permanent link to this record |
|
|
|
|
Author |
Josep Llados; Gemma Sanchez; Enric Marti |


|
|
Title |
A string based method to recognize symbols and structural textures in architectural plans |
Type |
Book Chapter |
|
Year |
1998 |
Publication |
Graphics Recognition Algorithms and Systems Second International Workshop, GREC' 97 Nancy, France, August 22–23, 1997 Selected Papers |
Abbreviated Journal  |
LNCS |
|
|
Volume |
1389 |
Issue |
1998 |
Pages |
91-103 |
|
|
Keywords |
|
|
|
Abstract |
This paper deals with the recognition of symbols and structural textures in architectural plans using string matching techniques. A plan is represented by an attributed graph whose nodes represent characteristic points and whose edges represent segments. Symbols and textures can be seen as a set of regions, i.e. closed loops in the graph, with a particular arrangement. The search for a symbol involves a graph matching between the regions of a model graph and the regions of the graph representing the document. Discriminating a texture means a clustering of neighbouring regions of this graph. Both procedures involve a similarity measure between graph regions. A string codification is used to represent the sequence of outlining edges of a region. Thus, the similarity between two regions is defined in terms of the string edit distance between their boundary strings. The use of string matching allows the recognition method to work also under presence of distortion. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Link |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
LNCS |
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; IAM |
Approved |
no |
|
|
Call Number |
IAM @ iam @ SLE1998 |
Serial |
1573 |
|
Permanent link to this record |
|
|
|
|
Author |
Palaiahnakote Shivakumara; Anjan Dutta; Chew Lim Tan; Umapada Pal |

|
|
Title |
Multi-oriented scene text detection in video based on wavelet and angle projection boundary growing |
Type |
Journal Article |
|
Year |
2014 |
Publication |
Multimedia Tools and Applications |
Abbreviated Journal  |
MTAP |
|
|
Volume |
72 |
Issue |
1 |
Pages |
515-539 |
|
|
Keywords |
|
|
|
Abstract |
In this paper, we address two complex issues: 1) Text frame classification and 2) Multi-oriented text detection in video text frame. We first divide a video frame into 16 blocks and propose a combination of wavelet and median-moments with k-means clustering at the block level to identify probable text blocks. For each probable text block, the method applies the same combination of feature with k-means clustering over a sliding window running through the blocks to identify potential text candidates. We introduce a new idea of symmetry on text candidates in each block based on the observation that pixel distribution in text exhibits a symmetric pattern. The method integrates all blocks containing text candidates in the frame and then all text candidates are mapped on to a Sobel edge map of the original frame to obtain text representatives. To tackle the multi-orientation problem, we present a new method called Angle Projection Boundary Growing (APBG) which is an iterative algorithm and works based on a nearest neighbor concept. APBG is then applied on the text representatives to fix the bounding box for multi-oriented text lines in the video frame. Directional information is used to eliminate false positives. Experimental results on a variety of datasets such as non-horizontal, horizontal, publicly available data (Hua’s data) and ICDAR-03 competition data (camera images) show that the proposed method outperforms existing methods proposed for video and the state of the art methods for scene text as well. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer US |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1380-7501 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ SDT2014 |
Serial |
2357 |
|
Permanent link to this record |
|
|
|
|
Author |
Marçal Rusiñol; J. Chazalon; Katerine Diaz |


|
|
Title |
Augmented Songbook: an Augmented Reality Educational Application for Raising Music Awareness |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Multimedia Tools and Applications |
Abbreviated Journal  |
MTAP |
|
|
Volume |
77 |
Issue |
11 |
Pages |
13773-13798 |
|
|
Keywords |
Augmented reality; Document image matching; Educational applications |
|
|
Abstract |
This paper presents the development of an Augmented Reality mobile application which aims at sensibilizing young children to abstract concepts of music. Such concepts are, for instance, the musical notation or the idea of rhythm. Recent studies in Augmented Reality for education suggest that such technologies have multiple benefits for students, including younger ones. As mobile document image acquisition and processing gains maturity on mobile platforms, we explore how it is possible to build a markerless and real-time application to augment the physical documents with didactic animations and interactive virtual content. Given a standard image processing pipeline, we compare the performance of different local descriptors at two key stages of the process. Results suggest alternatives to the SIFT local descriptors, regarding result quality and computational efficiency, both for document model identification and perspective transform estimation. All experiments are performed on an original and public dataset we introduce here. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; ADAS; 600.084; 600.121; 600.118; 600.129 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RCD2018 |
Serial |
2996 |
|
Permanent link to this record |
|
|
|
|
Author |
Kunal Biswas; Palaiahnakote Shivakumara; Umapada Pal; Tong Lu; Michel Blumenstein; Josep Llados |

|
|
Title |
Classification of aesthetic natural scene images using statistical and semantic features |
Type |
Journal Article |
|
Year |
2023 |
Publication |
Multimedia Tools and Applications |
Abbreviated Journal  |
MTAP |
|
|
Volume |
82 |
Issue |
9 |
Pages |
13507-13532 |
|
|
Keywords |
|
|
|
Abstract |
Aesthetic image analysis is essential for improving the performance of multimedia image retrieval systems, especially from a repository of social media and multimedia content stored on mobile devices. This paper presents a novel method for classifying aesthetic natural scene images by studying the naturalness of image content using statistical features, and reading text in the images using semantic features. Unlike existing methods that focus only on image quality with human information, the proposed approach focuses on image features as well as text-based semantic features without human intervention to reduce the gap between subjectivity and objectivity in the classification. The aesthetic classes considered in this work are (i) Very Pleasant, (ii) Pleasant, (iii) Normal and (iv) Unpleasant. The naturalness is represented by features of focus, defocus, perceived brightness, perceived contrast, blurriness and noisiness, while semantics are represented by text recognition, description of the images and labels of images, profile pictures, and banner images. Furthermore, a deep learning model is proposed in a novel way to fuse statistical and semantic features for the classification of aesthetic natural scene images. Experiments on our own dataset and the standard datasets demonstrate that the proposed approach achieves 92.74%, 88.67% and 83.22% average classification rates on our own dataset, AVA dataset and CUHKPQ dataset, respectively. Furthermore, a comparative study of the proposed model with the existing methods shows that the proposed method is effective for the classification of aesthetic social media images. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ BSP2023 |
Serial |
3873 |
|
Permanent link to this record |
|
|
|
|
Author |
Francisco Alvaro; Francisco Cruz; Joan Andreu Sanchez; Oriol Ramos Terrades; Jose Miguel Benedi |


|
|
Title |
Structure Detection and Segmentation of Documents Using 2D Stochastic Context-Free Grammars |
Type |
Journal Article |
|
Year |
2015 |
Publication |
Neurocomputing |
Abbreviated Journal  |
NEUCOM |
|
|
Volume |
150 |
Issue |
A |
Pages |
147-154 |
|
|
Keywords |
document image analysis; stochastic context-free grammars; text classication features |
|
|
Abstract |
In this paper we dene a bidimensional extension of Stochastic Context-Free Grammars for structure detection and segmentation of images of documents.
Two sets of text classication features are used to perform an initial classication of each zone of the page. Then, the document segmentation is obtained as the most likely hypothesis according to a stochastic grammar. We used a dataset of historical marriage license books to validate this approach. We also tested several inference algorithms for Probabilistic Graphical Models
and the results showed that the proposed grammatical model outperformed
the other methods. Furthermore, grammars also provide the document structure
along with its segmentation. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 601.158; 600.077; 600.061 |
Approved |
no |
|
|
Call Number |
Admin @ si @ ACS2015 |
Serial |
2531 |
|
Permanent link to this record |
|
|
|
|
Author |
Sounak Dey; Palaiahnakote Shivakumara; K.S. Raghunanda; Umapada Pal; Tong Lu; G. Hemantha Kumar; Chee Seng Chan |

|
|
Title |
Script independent approach for multi-oriented text detection in scene image |
Type |
Journal Article |
|
Year |
2017 |
Publication |
Neurocomputing |
Abbreviated Journal  |
NEUCOM |
|
|
Volume |
242 |
Issue |
|
Pages |
96-112 |
|
|
Keywords |
|
|
|
Abstract |
Developing a text detection method which is invariant to scripts in natural scene images is a challeng- ing task due to different geometrical structures of various scripts. Besides, multi-oriented of text lines in natural scene images make the problem more challenging. This paper proposes to explore ring radius transform (RRT) for text detection in multi-oriented and multi-script environments. The method finds component regions based on convex hull to generate radius matrices using RRT. It is a fact that RRT pro- vides low radius values for the pixels that are near to edges, constant radius values for the pixels that represent stroke width, and high radius values that represent holes created in background and convex hull because of the regular structures of text components. We apply k -means clustering on the radius matrices to group such spatially coherent regions into individual clusters. Then the proposed method studies the radius values of such cluster components that are close to the centroid and far from the cen- troid to detect text components. Furthermore, we have developed a Bangla dataset (named as ISI-UM dataset) and propose a semi-automatic system for generating its ground truth for text detection of arbi- trary orientations, which can be used by the researchers for text detection and recognition in the future. The ground truth will be released to public. Experimental results on our ISI-UM data and other standard datasets, namely, ICDAR 2013 scene, SVT and MSRA data, show that the proposed method outperforms the existing methods in terms of multi-lingual and multi-oriented text detection ability. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ DSR2017 |
Serial |
3260 |
|
Permanent link to this record |