|
Records |
Links |
|
Author |
Francisco Alvaro; Francisco Cruz; Joan Andreu Sanchez; Oriol Ramos Terrades; Jose Miguel Benedi |
|
|
Title |
Structure Detection and Segmentation of Documents Using 2D Stochastic Context-Free Grammars |
Type |
Journal Article |
|
Year |
2015 |
Publication |
Neurocomputing |
Abbreviated Journal |
NEUCOM |
|
|
Volume |
150 |
Issue |
A |
Pages |
147-154 |
|
|
Keywords |
document image analysis; stochastic context-free grammars; text classication features |
|
|
Abstract |
In this paper we dene a bidimensional extension of Stochastic Context-Free Grammars for structure detection and segmentation of images of documents.
Two sets of text classication features are used to perform an initial classication of each zone of the page. Then, the document segmentation is obtained as the most likely hypothesis according to a stochastic grammar. We used a dataset of historical marriage license books to validate this approach. We also tested several inference algorithms for Probabilistic Graphical Models
and the results showed that the proposed grammatical model outperformed
the other methods. Furthermore, grammars also provide the document structure
along with its segmentation. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 601.158; 600.077; 600.061 |
Approved |
no |
|
|
Call Number |
Admin @ si @ ACS2015 |
Serial |
2531 |
|
Permanent link to this record |
|
|
|
|
Author |
Marçal Rusiñol; David Aldavert; Ricardo Toledo; Josep Llados |
|
|
Title |
Efficient segmentation-free keyword spotting in historical document collections |
Type |
Journal Article |
|
Year |
2015 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
48 |
Issue |
2 |
Pages |
545–555 |
|
|
Keywords |
Historical documents; Keyword spotting; Segmentation-free; Dense SIFT features; Latent semantic analysis; Product quantization |
|
|
Abstract |
In this paper we present an efficient segmentation-free word spotting method, applied in the context of historical document collections, that follows the query-by-example paradigm. We use a patch-based framework where local patches are described by a bag-of-visual-words model powered by SIFT descriptors. By projecting the patch descriptors to a topic space with the latent semantic analysis technique and compressing the descriptors with the product quantization method, we are able to efficiently index the document information both in terms of memory and time. The proposed method is evaluated using four different collections of historical documents achieving good performances on both handwritten and typewritten scenarios. The yielded performances outperform the recent state-of-the-art keyword spotting approaches. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; ADAS; 600.076; 600.077; 600.061; 601.223; 602.006; 600.055 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RAT2015a |
Serial |
2544 |
|
Permanent link to this record |
|
|
|
|
Author |
G.Thorvaldsen; Joana Maria Pujadas-Mora; T.Andersen ; L.Eikvil; Josep Llados; Alicia Fornes; Anna Cabre |
|
|
Title |
A Tale of two Transcriptions |
Type |
Journal |
|
Year |
2015 |
Publication |
Historical Life Course Studies |
Abbreviated Journal |
|
|
|
Volume |
2 |
Issue |
|
Pages |
1-19 |
|
|
Keywords |
Nominative Sources; Census; Vital Records; Computer Vision; Optical Character Recognition; Word Spotting |
|
|
Abstract |
non-indexed
This article explains how two projects implement semi-automated transcription routines: for census sheets in Norway and marriage protocols from Barcelona. The Spanish system was created to transcribe the marriage license books from 1451 to 1905 for the Barcelona area; one of the world’s longest series of preserved vital records. Thus, in the Project “Five Centuries of Marriages” (5CofM) at the Autonomous University of Barcelona’s Center for Demographic Studies, the Barcelona Historical Marriage Database has been built. More than 600,000 records were transcribed by 150 transcribers working online. The Norwegian material is cross-sectional as it is the 1891 census, recorded on one sheet per person. This format and the underlining of keywords for several variables made it more feasible to semi-automate data entry than when many persons are listed on the same page. While Optical Character Recognition (OCR) for printed text is scientifically mature, computer vision research is now focused on more difficult problems such as handwriting recognition. In the marriage project, document analysis methods have been proposed to automatically recognize the marriage licenses. Fully automatic recognition is still a challenge, but some promising results have been obtained. In Spain, Norway and elsewhere the source material is available as scanned pictures on the Internet, opening up the possibility for further international cooperation concerning automating the transcription of historic source materials. Like what is being done in projects to digitize printed materials, the optimal solution is likely to be a combination of manual transcription and machine-assisted recognition also for hand-written sources. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2352-6343 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.077; 602.006 |
Approved |
no |
|
|
Call Number |
Admin @ si @ TPA2015 |
Serial |
2582 |
|
Permanent link to this record |
|
|
|
|
Author |
Carles Sanchez; Oriol Ramos Terrades; Patricia Marquez; Enric Marti; J.Roncaries; Debora Gil |
|
|
Title |
Automatic evaluation of practices in Moodle for Self Learning in Engineering |
Type |
Journal |
|
Year |
2015 |
Publication |
Journal of Technology and Science Education |
Abbreviated Journal |
JOTSE |
|
|
Volume |
5 |
Issue |
2 |
Pages |
97-106 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; DAG; 600.075; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ SRM2015 |
Serial |
2610 |
|
Permanent link to this record |
|
|
|
|
Author |
Lluis Gomez; Dimosthenis Karatzas |
|
|
Title |
A fast hierarchical method for multi‐script and arbitrary oriented scene text extraction |
Type |
Journal Article |
|
Year |
2016 |
Publication |
International Journal on Document Analysis and Recognition |
Abbreviated Journal |
IJDAR |
|
|
Volume |
19 |
Issue |
4 |
Pages |
335-349 |
|
|
Keywords |
scene text; segmentation; detection; hierarchical grouping; perceptual organisation |
|
|
Abstract |
Typography and layout lead to the hierarchical organisation of text in words, text lines, paragraphs. This inherent structure is a key property of text in any script and language, which has nonetheless been minimally leveraged by existing text detection methods. This paper addresses the problem of text
segmentation in natural scenes from a hierarchical perspective.
Contrary to existing methods, we make explicit use of text structure, aiming directly to the detection of region groupings corresponding to text within a hierarchy produced by an agglomerative similarity clustering process over individual regions. We propose an optimal way to construct such an hierarchy introducing a feature space designed to produce text group hypotheses with
high recall and a novel stopping rule combining a discriminative classifier and a probabilistic measure of group meaningfulness based in perceptual organization. Results obtained over four standard datasets, covering text in variable orientations and different languages, demonstrate that our algorithm, while being trained in a single mixed dataset, outperforms state of the art
methods in unconstrained scenarios. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.056; 601.197 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GoK2016a |
Serial |
2862 |
|
Permanent link to this record |