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A Fast Hierarchical Method for Multi-script and
Arbitrary Oriented Scene Text Extraction
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Abstract—Typography and layout lead to the hierarchical or-
ganisation of text in words, text lines, paragraphs. This inherent
structure is a key property of text in any script and language,
which has nonetheless been minimally leveraged by existing text
detection methods. This paper addresses the problem of text
segmentation in natural scenes from a hierarchical perspective.
Contrary to existing methods, we make explicit use of text struc-
ture, aiming directly to the detection of region groupings corre-
sponding to text within a hierarchy produced by an agglomerative
similarity clustering process over individual regions. We propose
an optimal way to construct such an hierarchy introducing a
feature space designed to produce text group hypotheses with
high recall and a novel stopping rule combining a discriminative
classifier and a probabilistic measure of group meaningfulness
based in perceptual organization. Results obtained over four
standard datasets, covering text in variable orientations and
different languages, demonstrate that our algorithm, while being
trained in a single mixed dataset, outperforms state of the art
methods in unconstrained scenarios.

Index Terms—scene text, segmentation, detection, hierarchical
grouping, perceptual organisation

I. INTRODUCTION

THE automated understanding of textual information in
natural scene images is receiving increasing attention

from computer vision researchers over the last decade. Text
localization, extraction and recognition methods have evolved
significantly and their accuracy has increased drastically in
recent years [1]. However, the problem is far from being
considered solved: note that the winner methods in the last
ICDAR competition achieve only 66% and 74% recall in the
tasks of text localization and text segmentation respectively.
The main difficulties of the problem stem from the extremely
high variability of scene text in terms of scale, rotation,
location, physical appearance, and typeface design. More-
over, although standard benchmark datasets have traditionally
focussed on horizontally-aligned English text, new datasets
have recently appeared covering much more unconstrained
scenarios including multi-script and arbitrary oriented text [2],
[3].

Hierarchical organisation is an essential feature of text.
Induced by typography and layout the hierarchical arrange-
ment of text strokes leads to the structural formation of text
component groupings at different levels (e.g. words, text lines,
paragraphs, etc.), see Figure 1. This hierarchical property
applies independently of the script, language, or style of the
glyphs, thus it allows us to pose the problem of text detection
in natural scenes in a holistic framework rather than as the
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Fig. 1: A natural scene image and a hierarchical representation
of its text. Atomic objects (characters) extracted in the bottom
layer are agglomerated into text groupings at different levels
of the hierarchy.

classification of individual patches or regions as text or non-
text. In fact, as Figure 2 shows, when text-parts are viewed
independently out of context they lose their distinguishable
text traits, although they become structurally relevant and
easily identifiable when observed as a group.

Most existing scene text extraction methods include a group-
ing step, but more often than not this is done as a heuristic
post-processing of regions (e.g. connected components or su-
perpixels) previously classified as text in order to create word
or text-line bounding boxes, and it is not part of the core text
extraction process [4], [5]. Contrary to existing methods, this
paper addresses the problem of text segmentation in natural
scenes from a hierarchical perspective tackling directly the
problem of the detection of groups of text regions, instead of
individual regions. The method is driven by an agglomerative
clustering process exploiting the strong similarities expected
between text components in such groups: irrespective on the
script or language, text is formed by aligned and equally
separated glyphs with noticeable contrast to their background,
with constant stroke width (thickness), similar color and sizes.

The main contributions of this paper are the following. First,
we learn an optimal feature space that encodes the similarities
between text components thus allowing the Single Linkage
Clustering algorithm to generate text group hypotheses with
high recall, independently of their orientations and scripts.

Fig. 2: Individual text-parts are less distinguishable when
viewed separately, but become structurally relevant and easily
identifiable when perceived as a group.
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Second, we couple the hierarchical clustering algorithm with
novel discriminative and probabilistic stopping rules, that
allow the efficient detection of text groups in a single grouping
step. Third, we propose a new set of features for text group
classification, that can be efficiently calculated in an incre-
mental way, able to capture the inherent structural properties
of text related to the arrangement of text parts and the intra-
group similarity.

Note that the proposed method is distinctly different from
other grouping based state of the art approaches [6] in that
the text group classification is not an a-posteriori step, but
an inherent part of the hierarchical clustering process. Our
findings are positioned in line with recent advances in ob-
ject recognition [7] where bottom-up grouping of an initial
segmentation is used to generate object location hypotheses,
producing a substantially reduced search space in comparison
to the traditional slidding window approaches. We make use of
incrementally computable group descriptors in order to make
possible the direct evaluation of group hypotheses generated
by the clustering algorithm without affecting the overall time
complexity of the method. Experiments demonstrate that our
algorithm outperforms the state of the art in the MSRRC,
MSRA-TD500 and KAIST datasets of multi-script and arbi-
trary oriented text [3], [2], [8]. It is important to notice that
our method produces state of the art results in four different
datasets with a single (mixed) training set, i.e. it can be
seen as a general purpose robust method applicable in many
different scenarios. This is afforded by the relatively high-level
modelling of text as a group of individual elements, a model
which is valid for practically every writing system.

II. RELATED WORK

Scene text detection methods can be categorized into
texture-based and region-based approaches. Texture-based
methods usually work by performing a sliding window search
over the image and extracting certain texture features in order
to classify each possible patch as text or non-text. Coates et
al. [9], and in a different flavour Wang et al. [10] and Netzer
et al. [11], propose the use of unsupervised feature learning
to generate the features for text versus non-text classification.
Wang et al. [12], extending their previous work [13], have
built an end-to-end scene text recognition system based on a
sliding window character classifier using Random Ferns, with
features originating from a HOG descriptor. Mishra et al. [14]
propose a closely related end-to-end method based on HOG
features and a SVM classifier. Texture based methods yield
good text localisation results, although they do not directly
address the issue of text segmentation (separation of text from
background). Their main drawback compared to region based
methods is their lower time performance, as sliding window
approaches are confronted with a huge search space in such an
unconstrained (i.e. variable scale, rotation, aspect-ratio) task.
Moreover, these methods are usually limited to the detection
of a single language and orientation for which they have been
trained on, therefore they are not directly applicable to the
multi-script and arbitrary oriented text scenario.

Region-based methods, on the other hand, are based on a
typical bottom-up pipeline: first performing an image segmen-

tation and subsequently classifying the resulting regions into
text or non-text ones. Yao et al. [2] extract regions in the
Stroke Width Transform (SWT) domain, proposed earlier for
text detection by Epshtein et al. [4]. Yin et al. [6] obtain state-
of-the-art performance with a method that prunes the tree of
Maximally Stable Extremal Regions (MSER) using the strat-
egy of minimizing regularized variations. The effectiveness of
MSER for character candidates detection is also exploited by
Chen et al. [5] and Novikova et al. [15], while Neumann et
al. [16] propose a region representation derived from MSER
where character/non-character classification is done for each
possible Extremal Region (ER).

Most of the region-based methods are complemented with
a post-processing step where regions assessed to be characters
are grouped together into words or text lines. The hierar-
chical structure of text has been traditionally exploited in
a post-processing stage with heuristic rules [4], [5] usually
constrained to search for horizontally aligned text in order to
avoid a combinatorial explosion of enumerating all possible
text lines. Neumann and Matas [16] introduce an efficient ex-
haustive search algorithm using heuristic verification functions
at different grouping levels (i.e. region pairs, triplets, etc.), but
still constrained to horizontal text. Yao et al. [2] make use of
a greedy agglomerative clustering where regions are grouped
if their average alignment is under a certain threshold. Yin et
al. [6] use a self-training distance metric learning algorithm
that can learn distance weights and clustering thresholds
simultaneously and automatically for text groups detection in
a similarity feature space.

In this paper we present a novel hierarchical approach in
which region hierarchies are built efficiently using Single
Linkage Clustering in a weighted similarity feature space. The
hierarchies are built in different color channels in order to
diversify the number of hypotheses and thus increase the max-
imum theoretical recall. Our method is less heuristic in nature
and faster than the greedy algorithm of Yao et al. [2], because
the number of atomic objects in our clustering analysis is
not increased by taking into account all possible region pairs;
besides our method uses similarity and not collinearity for
grouping. Yin et al. [6], and also our previous work [17], make
use of a two step architecture first doing an automatic cluster-
ing analysis in a similarity feature space and then classifying
the groups obtained in the first step. The method presented
here differs from such approaches in that our agglomerative
clustering algorithm integrates a group classifier, acting as a
stopping rule, that evaluates the conditional probability for
each group in the hierarchy to correspond to a text group in an
efficient manner through the use of incrementally computable
descriptors. In this sense our work is related with Matas
and Zimmerman [18] region detection algorithm, while the
incremental descriptors proposed here are designed to find
relevant groups of regions in a similarity dendrogram instead
of the detection of individual regions in the component tree
of the image. There is also a relationship between our method
with the work of Van de Sande et al. [19] and Uijlings et
al. [7] on using segmentation and grouping as selective search
for object recognition. However, our approach is distinct in
that their region grouping algorithm agglomerates regions in
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Fig. 3: A bottom-up agglomerative clustering of individual regions produces a dendrogram in which each node represents a text
group hypothesis. Our work focuses on learning the optimal features allowing the generation of pure text groups (comprising
only text regions) with high recall, and designing a stopping rule that allows the efficient detection of those groups in a single
grouping step.

a class-independent way while our hierarchical clusterings
are designed in order to maximize the chances of finding
specifically text groups. Thus, our algorithm can be seen as a
task-specific selective search.

III. HIERARCHY GUIDED TEXT EXTRACTION

Our hierarchical approach to text extraction involves an ini-
tial region decomposition step where non-overlapping atomic
text parts are identified. Extracted regions are then grouped
together in a bottom-up manner with an agglomerative process
guided by their similarity. The agglomerative clustering pro-
cess produces a dendrogram where each node represents a text
group hypothesis. We can then find the branches corresponding
to text groups by simply traversing the dendrogram with an
efficient stopping rule. Figure 3 shows an example of the main
steps of the pipeline.

We make use of the Maximally Stable Extremal Regions
(MSER) [20] algorithm to get the initial set of low-level
regions. MSERs have been extensively used in recent state of
the art methods for detecting text character candidates [21],
[5], [15], [17], [6]. Recall in character detection is increased
by extracting regions from different single channel projections
of the image (i.e. gray, red, green and blue channel). This
technique, denoted MSER++ [21], is a way of diversifying
the segmentation step in order to maximize the chances of
detecting all text regions.

In the following we address the problem of designing a
grouping algorithm exploiting the hierarchical structure of
text, in order to detect text regions in a holistic manner.
Our solution involves the learning of the optimal clustering
feature space for text regions grouping and the design of novel
discriminative and probabilistic stopping rules, that allows the
efficient detection of text groups in a single clustering step.

(a) (b) (c)

Fig. 4: There is no single best feature for character clustering:
Characters in the same word may appear with different color
(a), stroke width (b) or sizes (c).

A. Optimal clustering feature space

It is usually expected that text parts belonging to the same
word or text line share similar colors, stroke widths, and sizes.
Although the previous assumption does not always hold (see
Figure 4), in this work we consider that it is possible to
weight those simple similarity features obtaining an optimal
feature space projection that maximizes the probabilities of
finding pure text groups (groups comprising only regions that
correspond to text parts) in a Single Linkage Clustering (SLC)
dendrogram.

Let Rc be the initial set of individual regions extracted
with the MSER algorithm from channel c. We start an ag-
glomerative clustering process, where initially each region
r ∈ Rc starts in its own cluster and then the closest pair of
clusters (A,B) is merged iteratively, using the single linkage
criterion (min {d(ra, rb) : ra ∈ A, rb ∈ B }), until all regions
are clustered together (C ≡ Rc). The distance between two
regions d(ra, rb) is calculated as the squared Euclidean dis-
tance between their weighted feature vectors, adding a spatial
constraint term (the squared Euclidean distance between their
centers’ coordinates) in order to induce neighbouring regions
to merge first:
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(a) (b) (c) (d)

Fig. 5: (a) Scene image, (b) its MSER decomposition, and (c,d) two possible hierarchies built from two different weight
configurations, red nodes indicate pure text groupings. The first configuration (c) yields a 28% text group recall (T GR) while
the second (d) achieves 100% for this particular image.

d(a,b) =

D∑
i=1

(wi · (ai − bi))2+{(xa−xb)2+(ya−yb)2} (1)

where we consider the 5-dimensional feature space (D = 5)
comprising the following features: mean gray value of the
region, mean gray value in the immediate outer boundary of
the region, region’s major axis, mean stroke width, and mean
of the gradient magnitude at the region’s border.

It is worth noting that using the squared Euclidean distance
for the spatial term in equation 1, our clustering analy-
sis remains rotation invariant, thus the obtained hierarchy
generates the same text group hypotheses independently of
the image orientation. For example, rotating the image in
Figure 5a by any degree would produce exactly the same
dendrograms shown in Figures 5c and 5d.This is intentional as
we want our method to be capable of detecting text in arbitrary
orientations. In this way, our algorithm deals naturally with
arbitrary oriented text without using any heuristic assumption
or threshold.

Given a possible set of weights w, SLC produces a den-
drogram Dw where each node H ∈ Dw is a subset of
Rc and represents a text group hypothesis. The text group
recall (T GR) represents the ability of a particular weighting
configuration to produce pure text groupings (comprising only
text regions) corresponding to words or text lines in the
ground-truth. Figure 5 shows an example of how different
weight configurations lead to different text group recall.

Given a set of hypotheses H ∈ Dw, and a set of ground-
truth text-group objects (i.e. words and text-lines) G ∈ GT ,
T GR is defined as:

T GR(Dw, GT ) =
1

|GT |
∑

G∈GT

( max
H∈Dw

|H|
|G|

| ∀ rh ∈ H ∃ rg ∈ G | mr(rh, rg) > 0.9)
(2)

where | · | indicates cardinality of a set, and mr(·, ·) is the
overlap ratio between two regions. Thus, for each text-group
in the ground-truth (G ∈ GT ) we look for the largest group

Fig. 6: Our training set is assembled by manually separating
the pixel level ground-truth of train images into all possible
text groups (lines and words).

hypothesis in the dedrogram (H ∈ Dw) such that all regions
in H (rh ∈ H) match with regions in the ground-truth group
(rg ∈ G).

Our optimization problem for learning the optimal cluster-
ing feature space is defined as finding the set of weights wopt

that maximise T GR:

wopt = argmax
w

{T GR(Dw, GT )} (3)

As discussed before, there is no single best way to define
similarity between text parts, hence there is no single best
set of weights for our strategy, instead missing groups under
a particular configuration may be potentially found under
another. An alternative to using a single feature space would
be to diversify our clustering strategy, adding more hypotheses
to the system by building different hierarchies obtained from
different weight configurations (similarly to what we do with
different color channels).

At training time, we use grid search strategy over the
weights parameter space in order to solve equation 3 for
our training dataset. We assembled a mixed set of training
examples using the MSRRC and ICDAR training sets. The
MSRRC training set contains 167 images and the ICDAR
training set 229. We have manually separated all text-lines
and words in the ground truth data of these images, giving rise
to 1611 examples of text groups. Figure 6 shows the group
examples extracted from one of the training set images.
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The optimized weights wopt, obtained with grid search by
maximizing the text group recall using equation 3, yield a
cross-validated T GR of 0.87 in the training set, and are: w1 =
0.65 (for intensity mean) , w2 = 0.65 (for outer boundary
intensity mean) , w3 = 0.49 (for border gradient mean) , w4 =
0.67 (for diameter) , w5 = 0.91 (for stroke width mean).

As diversification strategy, after an optimized set of weights
is obtained we subsequently remove from the training set the
groups that have been detected, and then search again for
new optimal weights (wopt2 , . . . , woptn) with the remaining
groups. We evaluate this diversification strategy in section IV.

At test time, each of the optimal weight configurations is
used to generate a dendrogram where each node represents a
text group hypothesis. Selecting the branches corresponding
to text groups is done by traversing the dendrogram with an
efficient stopping rule.

B. Discriminative and Probabilistic Stopping Rules

Given a dendrogram representing a set of text groups
hypotheses from the SLC algorithm, we need a strategy to
determine the partition of the data that best fits our objective of
finding pure text groups. A rule to decide the best partition in a
Hierarchical Clustering is known as a stopping rule because it
can be seen as stopping the agglomerative process. Differently
from standard clustering stopping rules here we do not expect
to obtain a full partition of regions in Rc. In fact we do not
even know if there are any text clusters at all in Rc. Moreover,
in our case we have a quite clear model for the kind of groups
sought, corresponding to text. These particularities motivate
the next contribution of this paper. We propose a stopping
rule, to select a subset of meaningful clusters in a given
dendrogram Dw, comprising the combination of the following
two elements:
• A text group discriminative classifier.
• A probabilistic measure for hierarchical clustering valid-

ity assessment [22].
1) Discriminative Text Group Classifier: The first part of

our stopping rule takes advantage of supervised learning,
building a discriminative classification model F in a group-
level feature space. Thus, given a group hypothesis H and
its feature vector h, our stopping rule will accept H only
if F(h) = 1. We use a Real AdaBoost classifier [23] with
decision stumps. Our group-level features originate from three
different types: 1) Group intra-similarity statistics, since we
expect to see regions in the same word having low variation
in color, stroke width, and size; 2) Shape similarity of partici-
pating regions, in order to discriminate repetitive patterns, such
as bricks or windows in a building, which tend to be confused
with text; 3) Collinearity and equidistance features, measure
the text-like structure of text groups by using statistics of the
2-D Minimum Spanning Tree (MST) built with their regions
centers. The list of used features is as follows:
• FG intensities standard deviation.
• BG intensities standard deviation.
• Major axis coefficient of variation.
• Stroke widths [5] coefficient of variation.
• Mean gradient standard deviation.

• Aspect ratios coefficient of variation.
• Hu’s invariant moments [24] average Euclidean distance.
• Convex hull compactness [16] mean and standard devia-

tion.
• Convexity defects coefficient of variation.
• MST angles mean and standard deviation.
• MST edge widths coefficient of variation.
• MST edge distances mean vs. diameters mean ratio.
The AdaBoost classifier is trained using the same training

set described in section III-A. We have two sources of positive
samples: 1) Using each GT group as if it were the output of the
region decomposition step; 2) we run MSER and SLC (wopt)
against a train image and use as positive samples those pure-
text groups in the SLC tree with more than 80% match with a
GT group. From the same tree we extract negative examples as
nodes with 0 matchings. This gives us around 3k positive and
15k negative samples. We balance the positive and negative
data and train a first classifier that is used to select 100 hard
negatives that are used to re-train and improve accuracy.

2) Incrementally computable descriptors: Since at test time
we have to calculate the group level features at each node
of the similarity hierarchy, it is important that they are fast
to compute. We take advantage of the inclusion relation
of the dendrogram’s nodes in order to make such features
incrementally computable when possible. This allows us to
compute the probability of each possible group of regions to
be a text group without affecting the overall time complexity
of our algorithm.

Group level features consisting of simple statistics over
individual region features (e.g. diameters, strokes, intensity,
etc.) can be incrementally computed straightforwardly with a
few arithmetic operations and so have a constant complexity
O(1).

Regarding the MST based features, an incremental algo-
rithm (i.e. propagating the MST of children nodes to their
parent) computing the MST on each node of the dendrogram
takes O(n×log2n) in the worst case. Although this complexity
is much lower than the O(n2) complexity of the SLC step and
thus does not affect the overall complexity of the algorithm,
this has noticeable impact in run time. For this reason we
add an heuristic rule on the maximum size of valid clusters:
clusters with more than a certain number of regions are
immediately discarded and there is no need to compute their
features. By taking the length of the largest text line in the
MSRRC training set (50) as the maximum cluster size, the run-
time growth due to the features calculation in our algorithm
is negligible and the obtained results are not affected at all.

3) Probabilistic cluster meaningfulness estimation: The
way our classifier F is designed may eventually make the
discriminative stopping rule to accept groups with outliers.
For example, Figure 7 shows the situation where a node of
the dendrogram consisting in a correctly detected word is
merged with a (character like) region which is not part of
the text group (outlier). In order to increase the discriminative
power of our stopping rule in such situations, we make use of
a probabilistic measure of cluster meaningfulness [25], [22].
This probabilistic measure, also used for text detection in
our previous work [17], provides us with a way to compare
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Fig. 7: A node in a similarity dendrogram consisting in a cor-
rectly detected word (H1) is merged with a cluster consisting
of a single region outlier (H2). Our stopping rule will not
consider valid the resulting cluster H = {H1 ∪H2} although
the classifier has labelled it as a text group (F(h) = 1)
because NFA(H) is larger than NFA(H1). The scatter plot
simulates the arrangement of the feature vectors of the regions
forming H1, H2, and H in the similarity feature space.

clusters’ qualities in order to decide if a given node in the
dendrogram is a better text candidate than its children.

The Number of False Alarms (NFA) [25], [22], based on
the principle on non-accidentalness, measures the meaningful-
ness of a particular group of regions in Rc by quantifying how
the distribution of their features deviates from randomness.
Consider that there are n regions in Rc and that a particular
group hypothesis H of k of them have a feature in common.
Assuming that the observed quality has been distributed ran-
domly and uniformly across all regions in Rc, the probability
that the observed distribution for H is a random realisation
of this uniform process is given by the tail of the binomial
distribution:

NFA(G) = BG(k, n, p) =
n∑

i=k

(
n

i

)
pi(1− p)n−i (4)

where p is the probability of a single object having the
aforementioned feature. The lower the NFA is, the more
meaningful the group is.

We make use of this metric in each node of a dendrogram
Dw to assess the meaningfulness of all produced grouping hy-
potheses. We calculate (4) for each possible group hypothesis
H using as p the ratio of the volume defined by the distribution
of the feature vectors of the comprising regions (h ∈ H) with
respect to the total volume of the 5−D feature space defined
in Section III-A.

Our stopping rule is defined recursively in order to accept
a particular hypothesis H as a valid group iif its classifier
predicted label is ”text” (F(h) = 1) and its meaningfulness
measure is higher than the respective meaningfulness measures
of every successor A and every ancestor B labelled as text,
i.e. the following inequalities hold:

NFA(H) < NFA(A),∀A ∈ successors(H) | F(A) = 1
(5)

NFA(H) < NFA(B),∀B ∈ ancestors(H) | F(B) = 1
(6)

Notice that by using this criteria no region is allowed to
belong to more than one text group at the same time. The
clustering analysis is done without specifying any parameter
or cut-off value and without making any assumption on the

number of meaningful clusters, but merely comparing the
values of (4) at each node in the dendrogram for which
the discriminative classifier label is ”text” (F(H) = 1). See
Figure 7 for an example on how this stopping rule is able to
detect outliers. As a side effect, the stopping rule is also able
to correctly separate different words in a text line.

At this point, applying the method described so far our algo-
rithm is able to produce results for the scene text segmentation
task. The segmentation task is evaluated at pixel-level, this
is the algorithm must provide a binary image where white
pixels correspond to text and black pixels to background. All
segmentation results given in section IV are obtained with this
algorithm, trained with a single mixed dataset and without
any further post-processing, by setting to white the pixels
corresponding to the detected text groups. Figures 8, 9, and 13
show segmentation results of our method in different datasets.

C. From Pixel Level Segmentation to Bounding Box Localiza-
tion

In order to evaluate our method in the text localization
task we extend our method with a simple post-processing
operation in order to obtain word and text line bounding boxes
depending on the semantic level ground truth information
is defined (e.g. words in the case of ICDAR and MSRRC
datasets, lines in the case of the MSRA-TD500 dataset). This
is because the text groups detected by our stopping rule may
correspond indistinctly to words, lines, or even paragraphs in
some cases, depending on the particular typography and layout
of the detected text.

First of all, region groups selected as text by our stopping
rule in the different dendrograms are combined in a procedure
that serves to de-duplicate repeated groups (e.g. the same
group may potentially be found in several channels or weights
configurations) and to merge collinear groups that may have
been detected by chunks. Two given text groups are merged if
they are collinear, and their relative distance and height ratio
are under thresholds learned during training.

After that, if needed by the granularity of the ground-truth
level, we split resulted text lines into words by considering
as word boundaries all spaces between regions with a larger
distance than a certain threshold, learned during training,
proportional to the group’s average inter-region distance.

IV. EXPERIMENTS

The proposed method has been evaluated on three multi-
script and arbitrary oriented text datasets and one English-
only dataset for the tasks of text extraction and localization.
All the segmentation evaluation is done at the pixel level, i.e.
precision p and recall r are defined as p = |E ∩ T |/|E| and
r = |E ∩ T |/|T |, where E is the set of pixels labelled as text
and T is the set of pixels corresponding to text in the ground
truth. The localization results are evaluated with different
frameworks depending on the dataset. The ICDAR [1], [26]
and MSCCR [3] datasets have ground-truth defined at the
word level and the proposed evaluation framework is the one
of Wolf and Jolion [27]. The MSRA-TD500 [2] has ground-
truth defined at the line level and uses it’s own evaluation
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TABLE I: Segmentation results (a) and Precision-Recall curves (b) comparing different variants of our method.

(a)

Method Precision Recall F-score

Gomez and Karatzas (2013) [17], [3] 0.64 0.58 0.61
Gomez and Karatzas (2013) MSER++ 0.50 0.71 0.59
MSER | wI 0.69 0.58 0.63
MSER | wopt 0.69 0.62 0.65
MSER | wI | stopping rule 0.76 0.60 0.67
MSER | wopt | stopping rule 0.77 0.62 0.69
MSER++ | wopt | stopping rule 0.75 0.71 0.73
MSER++ | wopt, wopt2 , wopt3 , wopt4 | stopping rule 0.67 0.73 0.70
MSER++ | wopt, wopt2 ,. . . , wopt7 | stopping rule 0.56 0.74 0.64

(b)

Fig. 8: Qualitative segmentation results on the MSRRC 2013 dataset.

framework. We use the standard evaluation frameworks for
each dataset to be able to compare with the state of the art.

A. Baseline analysis

We have evaluated different variants of our method in order
to assess the contribution of each of the proposed techniques.
This baseline analysis is performed in the MSRRC test set. The
baseline method is configured by setting all weights to 1 (wI )
and accepting all group hypotheses which are labelled as text
by the classifier (F(H) = 1). We compare this baseline with
the variants making use of the learned optimal weights wopt,
and with including the meaningfulness criteria to our stop-
ping rule. Finally we have evaluated the impact of different
diversification strategies to the initial segmentation, both in the
number of image channels (MSER vs. MSER++), and in the
number of weight configurations by adding a variable number
of optimal weighted configurations wopt2 , . . . , woptn into the
system. Table Ia shows segmentation results of our method
in the MSRRC 2013 test set comparing different variants
of our method and different diversification strategies. The
table includes also two variants of our previously published
work [17] for comparison. We chose to use the MSRRC
dataset for this analysis as it is representative of the targeted
scenario of multi-script and arbitrarily oriented text. Figure Ib
plots the Precision-Recall curves, obtained by varying the
acceptance threshold of the discriminative classifier in the
stopping rule, for the five top scoring variations in Table Ia.

From the obtained results we can see that the optimized
weights wopt have a noticeable impact in the method recall,
while the stopping rule leads to a considerable increase in
precision without any recall deterioration. Regarding diversifi-

cation, if one wants to maximize the harmonic mean between
precision and recall, the use of MSER++ is well justified even
though it produces a slight precision drop. However, exam-
ining the effect of further diversification using more optimal
weighting configurations, we can see that the obtained gain
in recall by adding more hypotheses does not help improving
the f-score as it produces a significant precision deterioration.
Such a diversification strategy should be considered only if
one wants to maximize the system’s recall.

B. Multi-script and arbitrary oriented scene text extraction

We evaluate our method in three standard multi-script
and arbitrary oriented text datasets. The MSRA-TD500
dataset [28] does not have pixel-level segmentation ground
truth and thus we only evaluate on it for the text localization
task, while in the MSRRC [3] and KAIST [8] datasets evalu-
ation is done for both segmentation and localization tasks.

The MSRA-TD500 dataset [28] contains arbitrary oriented
text in both English and Chinese languages. The dataset
contains 500 images in total, with varying resolutions from
1296×864 to 1920×1280. The evaluation for text localization
is done as proposed in [28] using minimum area rectangles.
For an estimated minimum area rectangle D to be considered
a true positive, it is required to find a ground truth rectangle
G such that:

A(D′ ∩G′)/A(D′ ∪G′) > 0.5, abs(αD − αG) < π/8

where D′ and G′ are the axis oriented versions of D and G,
A(D′ ∩G′) and A(D′ ∪G′) are respectively the area of their
intersection and union, and αD and αG their rotation angles.
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Fig. 9: Qualitative segmentation results on the KAIST dataset.

Fig. 10: Qualitative localization results on the MSRA-TD500 dataset.

The definitions of precision p and recall r are: p = |TP |/|E|,
r = |TP |/|T | where TP is the set of true positive detections
while E and T are the sets of estimated rectangles and ground
truth rectangles. Table II compares our results with other state
of the art methods on the MSRA-TD500 dataset and Figure 10
show qualitative localization results.

TABLE II: Localization results in the MSRA-TD500 dataset.

Method Precision Recall F-score

Ours 0.69 0.54 0.61
TD-Mixture [28] 0.63 0.63 0.60
Gomez & Karatzas [17] 0.58 0.54 0.56
TD-ICDAR [28] 0.53 0.52 0.54
Epshtein et al. [4] 0.25 0.25 0.25
Chen et al. [29] 0.05 0.05 0.05

The MSRRC dataset [3] comprises 334 camera-captured
scene images, 167 in the training and 167 in the test set
respectively, with sizes around 1.2MP for text localization
and segmentation tasks. It covers Latin, Chinese, Kannada,
and Devanagari scripts, and includes text with multiple ori-
entations. Tables III and IV compares our results with the
participants in the segmentation and localization tasks of the
2013 Multi-script Robust Reading Competition, while Figure 8
show examples of qualitative results. The average run-time of
our algorithm in this dataset is 1.67 seconds per image on a
standard PC.

TABLE III: Segmentation results in the MSRRC 2013 dataset.

Method Precision Recall F-score

Ours 0.75 0.71 0.73
Yin et al.[6], [3] 0.71 0.67 0.69
Gomez & Karatzas [17], [3] 0.64 0.58 0.61
Sethi et al.[3] 0.33 0.72 0.45
OTCYMIST [30], [3] 0.50 0.29 0.37

Figure 11 show the inverse grade curves of different meth-
ods in the MSRRC dataset. The inverse grade curve plots the

Fig. 11: Inverse grade curves of different methods in the
MSRRC dataset [3].

TABLE IV: Localization results in the MSRRC 2013 dataset.

Method Precision Recall F-score

Ours 0.63 0.54 0.58
Yin et al.[6], [3] 0.64 0.42 0.51

f-score divided by the ratio of text pixels for each image, and
inversely sorts these values by the amount of text pixels, thus
larger values in the x-axis correspond to images with less text.
As can be seen our curve is the nearest to follow the ground-
truth benchmark curve.

The KAIST dataset [8] comprises 3000 natural scene
images, with a resolution of 640 × 480pixels, categorized
according to the language of the scene text captured: Korean,
English, and Mixed (Korean + English). For our experiments
we use the subset of 800 images corresponding to the Mixed
subset in accordance to other reported results. Quantitative
results are given in Table V while a set of example qualitative
results are shown in Figure 9. Our method archives a 0.77
f-score in the localization task, with a 0.71 precision and 0.83
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Fig. 12: Qualitative localization results on the ICDAR 2013 dataset.

recall, not comparable to other methods as being the first to
report localization results for this dataset. The average run-
time of our algorithm in this dataset is 0.5 seconds per image
on a standard PC.

TABLE V: Segmentation results in the KAIST dataset.

Method Precision Recall F-score

Ours 0.67 0.89 0.76
Gomez & Karatzas [17] 0.66 0.78 0.71
Lee et al.[8] 0.69 0.60 0.64
OTCYMIST [30] 0.52 0.61 0.56

The interpretation of the high increase in recall observed
in the KAIST dataset compared to the obtained in MSRRC
follows the fact that in KAIST dataset small text characters are
not labelled in the groud-truth. These small text components
are in general the ones more difficult to detect. On the other
hand, in some cases precision suffers when such small text is
correctly detected as it counts as false positive.

C. English horizontal scene text extraction

The proposed method has been evaluated on the IC-
DAR2013 Robust Reading Dataset [1]. The ICDAR2013
dataset contains 462 images, of which 229 comprise the
training set and 233 images the test set. Table VI compares the
results of our method with the participants in the 2013 ICDAR
Robust Reading Competition for the task of text segmentation.
The average run-time of our algorithm in this dataset is 1.78
seconds per image on a standard PC.

TABLE VI: Segmentation results in the ICDAR Robust Read-
ing Competition 2013 dataset.

Method Precision Recall F-score

I2R NUS FAR [1] * 0.82 0.75 0.78
I2R NUS [1] * 0.79 0.73 0.76
Ours 0.74 0.71 0.73
USTB FuStar [6], [1] 0.74 0.70 0.72
Text Detection [1] 0.76 0.65 0.70
NSTextractor [1] 0.76 0.61 0.68
NSTsegmentator [1] 0.64 0.68 0.66
Gomez & Karatzas 2013 [17] 0.63 0.59 0.61
OTCYMIST [30], [1] 0.46 0.59 0.52

As can be seen in Tables VI and VII our method produces
competitive results although it does not perform better than
the winner methods in the last ICDAR competition. This has
a coherent interpretation as we aim for the highest gener-
ality of our method, addressing the unconstrained problem
of detecting text irrespective of its language, script, and

TABLE VII: Localization results in the ICDAR Robust Read-
ing Competition 2013 dataset.

Method Precision Recall F-score

USTB TexStar [1], [6] 0.88 0.66 0.76
TextSpotter [1], [16] 0.88 0.65 0.74
CASIA NLPR [1] 0.79 0.68 0.73
Ours 0.78 0.67 0.72
Text detector CASIA [1] 0.85 0.63 0.72
I2R NUS FAR [1] * 0.75 0.69 0.72
I2R NUS [1] * 0.73 0.66 0.69
TH-TextLoc [1] 0.70 0.65 0.67
Text Detection [1] 0.74 0.53 0.62
Baseline [1] 0.61 0.35 0.44
Inkam [1] 0.31 0.35 0.33

orientation. Contrary to our method, most methods listed in
Tables VI and VII have been trained explicitly for horizontally
aligned English text and address only this particular scenario.
For example the TextSpotter [16] method is reported to be
specifically designed to detect only English and horizontal
text. The USTB TextStar [6] is a multi-script method but has
two different variants for horizontal and arbitrary oriented text,
while scoring first in the ICDAR dataset, Tables III and IV
show that our method is superior in other scenarios. Methods
marked with an asterisk in Tables VI and VII have not been
published.

Finally, we evaluate our method in the ICDAR2003
dataset [26]. This is a slightly different version of the ICDAR
dataset, with almost the same images but proposing a distinct
evaluation framework. Table VIII compare our results in the
ICDAR2003 dataset with other state of the art methods. It is
important to notice that some of the top scoring methods in
this table have been evaluated in the MSRA-TD500 arbitrary
oriented text dataset with a much worse performance compared
to the method proposed here, as can be seen in Table II. This
is again because such methods are designed specifically for
the solely detection of English horizontal text.

TABLE VIII: Localization results in the ICDAR 2003 dataset.

Method Precision Recall F-score

Ours 0.74 0.65 0.69
TD-Mixture [2] 0.69 0.66 0.67
TD-ICDAR [2] 0.68 0.66 0.66
Epshtein et al. [4] 0.73 0.60 0.66
Yi et al.[31] 0.71 0.62 0.62
Becker et al.[26] 0.62 0.67 0.62
Chen et al. [29] 0.60 0.60 0.58
Zhu et al.[26] 0.33 0.40 0.33
Kim et al.[26] 0.22 0.28 0.22
Ezaki et al.[26] 0.18 0.36 0.22
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Fig. 13: Qualitative segmentation results on the ICDAR dataset.

Fig. 14: Common errors in the ICDAR dataset include false positives due to repetitive patterns and missing text in images
with strong highlights, degraded text, or individual characters.

V. CONCLUSIONS

This paper presents a scene text extraction method in which
the exploitation of the hierarchical structure of text plays an
integral part. We have shown that the algorithm can efficiently
detect text groups whith arbitrary orientation in a single
clustering process that involves: a learned optimal clustering
feature space for text region grouping, novel discriminative
and probabilistic stopping rules, and a new set of features for
text group classification that can be efficiently calculated in
an incremental way.

Experimental results demonstrate that the presented algo-
rithm outperforms other state of the art methods in three
multi-script and arbitrary oriented scene text standard datasets
while it stays competitive in the more restricted scenario of
horizontally-aligned English text ICDAR dataset. Moreover,
the presented results in all datasets are obtained with a
single (mixed) training set, demonstrating the general purpose
character of the method which yields robust performance in a
variety of distictly different scenarios.

Finally, the baseline analysis of the algorithm reveals that
overall system recall can be substantially increased if needed
by using feature space diversification.
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