|
Records |
Links |
|
Author |
Jaume Gibert; Ernest Valveny; Horst Bunke |


|
|
Title |
Feature Selection on Node Statistics Based Embedding of Graphs |
Type |
Journal Article |
|
Year |
2012 |
Publication |
Pattern Recognition Letters |
Abbreviated Journal |
PRL |
|
|
Volume |
33 |
Issue |
15 |
Pages |
1980–1990 |
|
|
Keywords |
Structural pattern recognition; Graph embedding; Feature ranking; PCA; Graph classification |
|
|
Abstract |
Representing a graph with a feature vector is a common way of making statistical machine learning algorithms applicable to the domain of graphs. Such a transition from graphs to vectors is known as graphembedding. A key issue in graphembedding is to select a proper set of features in order to make the vectorial representation of graphs as strong and discriminative as possible. In this article, we propose features that are constructed out of frequencies of node label representatives. We first build a large set of features and then select the most discriminative ones according to different ranking criteria and feature transformation algorithms. On different classification tasks, we experimentally show that only a small significant subset of these features is needed to achieve the same classification rates as competing to state-of-the-art methods. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication  |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ GVB2012b |
Serial |
1993 |
|
Permanent link to this record |
|
|
|
|
Author |
Sophie Wuerger; Kaida Xiao; Dimitris Mylonas; Q. Huang; Dimosthenis Karatzas; Galina Paramei |


|
|
Title |
Blue green color categorization in mandarin english speakers |
Type |
Journal Article |
|
Year |
2012 |
Publication |
Journal of the Optical Society of America A |
Abbreviated Journal |
JOSA A |
|
|
Volume |
29 |
Issue |
2 |
Pages |
A102-A1207 |
|
|
Keywords |
|
|
|
Abstract |
Observers are faster to detect a target among a set of distracters if the targets and distracters come from different color categories. This cross-boundary advantage seems to be limited to the right visual field, which is consistent with the dominance of the left hemisphere for language processing [Gilbert et al., Proc. Natl. Acad. Sci. USA 103, 489 (2006)]. Here we study whether a similar visual field advantage is found in the color identification task in speakers of Mandarin, a language that uses a logographic system. Forty late Mandarin-English bilinguals performed a blue-green color categorization task, in a blocked design, in their first language (L1: Mandarin) or second language (L2: English). Eleven color singletons ranging from blue to green were presented for 160 ms, randomly in the left visual field (LVF) or right visual field (RVF). Color boundary and reaction times (RTs) at the color boundary were estimated in L1 and L2, for both visual fields. We found that the color boundary did not differ between the languages; RTs at the color boundary, however, were on average more than 100 ms shorter in the English compared to the Mandarin sessions, but only when the stimuli were presented in the RVF. The finding may be explained by the script nature of the two languages: Mandarin logographic characters are analyzed visuospatially in the right hemisphere, which conceivably facilitates identification of color presented to the LVF. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication  |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ WXM2012 |
Serial |
2007 |
|
Permanent link to this record |
|
|
|
|
Author |
Yunchao Gong; Svetlana Lazebnik; Albert Gordo; Florent Perronnin |


|
|
Title |
Iterative quantization: A procrustean approach to learning binary codes for Large-Scale Image Retrieval |
Type |
Journal Article |
|
Year |
2012 |
Publication |
IEEE Transactions on Pattern Analysis and Machine Intelligence |
Abbreviated Journal |
TPAMI |
|
|
Volume |
35 |
Issue |
12 |
Pages |
2916-2929 |
|
|
Keywords |
|
|
|
Abstract |
This paper addresses the problem of learning similarity-preserving binary codes for efficient similarity search in large-scale image collections. We formulate this problem in terms of finding a rotation of zero-centered data so as to minimize the quantization error of mapping this data to the vertices of a zero-centered binary hypercube, and propose a simple and efficient alternating minimization algorithm to accomplish this task. This algorithm, dubbed iterative quantization (ITQ), has connections to multi-class spectral clustering and to the orthogonal Procrustes problem, and it can be used both with unsupervised data embeddings such as PCA and supervised embeddings such as canonical correlation analysis (CCA). The resulting binary codes significantly outperform several other state-of-the-art methods. We also show that further performance improvements can result from transforming the data with a nonlinear kernel mapping prior to PCA or CCA. Finally, we demonstrate an application of ITQ to learning binary attributes or “classemes” on the ImageNet dataset. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication  |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0162-8828 |
ISBN |
978-1-4577-0394-2 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ GLG 2012b |
Serial |
2008 |
|
Permanent link to this record |
|
|
|
|
Author |
Muhammad Muzzamil Luqman; Jean-Yves Ramel; Josep Llados; Thierry Brouard |


|
|
Title |
Fuzzy Multilevel Graph Embedding |
Type |
Journal Article |
|
Year |
2013 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
46 |
Issue |
2 |
Pages |
551-565 |
|
|
Keywords |
Pattern recognition; Graphics recognition; Graph clustering; Graph classification; Explicit graph embedding; Fuzzy logic |
|
|
Abstract |
Structural pattern recognition approaches offer the most expressive, convenient, powerful but computational expensive representations of underlying relational information. To benefit from mature, less expensive and efficient state-of-the-art machine learning models of statistical pattern recognition they must be mapped to a low-dimensional vector space. Our method of explicit graph embedding bridges the gap between structural and statistical pattern recognition. We extract the topological, structural and attribute information from a graph and encode numeric details by fuzzy histograms and symbolic details by crisp histograms. The histograms are concatenated to achieve a simple and straightforward embedding of graph into a low-dimensional numeric feature vector. Experimentation on standard public graph datasets shows that our method outperforms the state-of-the-art methods of graph embedding for richly attributed graphs. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Elsevier |
Place of Publication  |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0031-3203 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.042; 600.045; 605.203 |
Approved |
no |
|
|
Call Number |
Admin @ si @ LRL2013a |
Serial |
2270 |
|
Permanent link to this record |
|
|
|
|
Author |
Anjan Dutta; Josep Llados; Umapada Pal |


|
|
Title |
A symbol spotting approach in graphical documents by hashing serialized graphs |
Type |
Journal Article |
|
Year |
2013 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
46 |
Issue |
3 |
Pages |
752-768 |
|
|
Keywords |
Symbol spotting; Graphics recognition; Graph matching; Graph serialization; Graph factorization; Graph paths; Hashing |
|
|
Abstract |
In this paper we propose a symbol spotting technique in graphical documents. Graphs are used to represent the documents and a (sub)graph matching technique is used to detect the symbols in them. We propose a graph serialization to reduce the usual computational complexity of graph matching. Serialization of graphs is performed by computing acyclic graph paths between each pair of connected nodes. Graph paths are one-dimensional structures of graphs which are less expensive in terms of computation. At the same time they enable robust localization even in the presence of noise and distortion. Indexing in large graph databases involves a computational burden as well. We propose a graph factorization approach to tackle this problem. Factorization is intended to create a unified indexed structure over the database of graphical documents. Once graph paths are extracted, the entire database of graphical documents is indexed in hash tables by locality sensitive hashing (LSH) of shape descriptors of the paths. The hashing data structure aims to execute an approximate k-NN search in a sub-linear time. We have performed detailed experiments with various datasets of line drawings and compared our method with the state-of-the-art works. The results demonstrate the effectiveness and efficiency of our technique. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Elsevier |
Place of Publication  |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0031-3203 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.042; 600.045; 605.203; 601.152 |
Approved |
no |
|
|
Call Number |
Admin @ si @ DLP2012 |
Serial |
2127 |
|
Permanent link to this record |