|
Records |
Links |
|
Author |
Albert Gordo; Alicia Fornes; Ernest Valveny |
|
|
Title |
Writer identification in handwritten musical scores with bags of notes |
Type |
Journal Article |
|
Year |
2013 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
46 |
Issue |
5 |
Pages |
1337-1345 |
|
|
Keywords |
|
|
|
Abstract |
Writer Identification is an important task for the automatic processing of documents. However, the identification of the writer in graphical documents is still challenging. In this work, we adapt the Bag of Visual Words framework to the task of writer identification in handwritten musical scores. A vanilla implementation of this method already performs comparably to the state-of-the-art. Furthermore, we analyze the effect of two improvements of the representation: a Bhattacharyya embedding, which improves the results at virtually no extra cost, and a Fisher Vector representation that very significantly improves the results at the cost of a more complex and costly representation. Experimental evaluation shows results more than 20 points above the state-of-the-art in a new, challenging dataset. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0031-3203 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ GFV2013 |
Serial |
2307 |
|
Permanent link to this record |
|
|
|
|
Author |
Volkmar Frinken; Andreas Fischer; Markus Baumgartner; Horst Bunke |
|
|
Title |
Keyword spotting for self-training of BLSTM NN based handwriting recognition systems |
Type |
Journal Article |
|
Year |
2014 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
47 |
Issue |
3 |
Pages |
1073-1082 |
|
|
Keywords |
Document retrieval; Keyword spotting; Handwriting recognition; Neural networks; Semi-supervised learning |
|
|
Abstract |
The automatic transcription of unconstrained continuous handwritten text requires well trained recognition systems. The semi-supervised paradigm introduces the concept of not only using labeled data but also unlabeled data in the learning process. Unlabeled data can be gathered at little or not cost. Hence it has the potential to reduce the need for labeling training data, a tedious and costly process. Given a weak initial recognizer trained on labeled data, self-training can be used to recognize unlabeled data and add words that were recognized with high confidence to the training set for re-training. This process is not trivial and requires great care as far as selecting the elements that are to be added to the training set is concerned. In this paper, we propose to use a bidirectional long short-term memory neural network handwritten recognition system for keyword spotting in order to select new elements. A set of experiments shows the high potential of self-training for bootstrapping handwriting recognition systems, both for modern and historical handwritings, and demonstrate the benefits of using keyword spotting over previously published self-training schemes. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.077; 602.101 |
Approved |
no |
|
|
Call Number |
Admin @ si @ FFB2014 |
Serial |
2297 |
|
Permanent link to this record |
|
|
|
|
Author |
Veronica Romero; Alicia Fornes; Nicolas Serrano; Joan Andreu Sanchez; A.H. Toselli; Volkmar Frinken; E. Vidal; Josep Llados |
|
|
Title |
The ESPOSALLES database: An ancient marriage license corpus for off-line handwriting recognition |
Type |
Journal Article |
|
Year |
2013 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
46 |
Issue |
6 |
Pages |
1658-1669 |
|
|
Keywords |
|
|
|
Abstract |
Historical records of daily activities provide intriguing insights into the life of our ancestors, useful for demography studies and genealogical research. Automatic processing of historical documents, however, has mostly been focused on single works of literature and less on social records, which tend to have a distinct layout, structure, and vocabulary. Such information is usually collected by expert demographers that devote a lot of time to manually transcribe them. This paper presents a new database, compiled from a marriage license books collection, to support research in automatic handwriting recognition for historical documents containing social records. Marriage license books are documents that were used for centuries by ecclesiastical institutions to register marriage licenses. Books from this collection are handwritten and span nearly half a millennium until the beginning of the 20th century. In addition, a study is presented about the capability of state-of-the-art handwritten text recognition systems, when applied to the presented database. Baseline results are reported for reference in future studies. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Elsevier Science Inc. New York, NY, USA |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0031-3203 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.045; 602.006; 605.203 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RFS2013 |
Serial |
2298 |
|
Permanent link to this record |
|
|
|
|
Author |
Jaume Gibert; Ernest Valveny; Horst Bunke |
|
|
Title |
Embedding of Graphs with Discrete Attributes Via Label Frequencies |
Type |
Journal Article |
|
Year |
2013 |
Publication |
International Journal of Pattern Recognition and Artificial Intelligence |
Abbreviated Journal |
IJPRAI |
|
|
Volume |
27 |
Issue |
3 |
Pages |
1360002-1360029 |
|
|
Keywords |
Discrete attributed graphs; graph embedding; graph classification |
|
|
Abstract |
Graph-based representations of patterns are very flexible and powerful, but they are not easily processed due to the lack of learning algorithms in the domain of graphs. Embedding a graph into a vector space solves this problem since graphs are turned into feature vectors and thus all the statistical learning machinery becomes available for graph input patterns. In this work we present a new way of embedding discrete attributed graphs into vector spaces using node and edge label frequencies. The methodology is experimentally tested on graph classification problems, using patterns of different nature, and it is shown to be competitive to state-of-the-art classification algorithms for graphs, while being computationally much more efficient. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ GVB2013 |
Serial |
2305 |
|
Permanent link to this record |
|
|
|
|
Author |
Jon Almazan; Alicia Fornes; Ernest Valveny |
|
|
Title |
A non-rigid appearance model for shape description and recognition |
Type |
Journal Article |
|
Year |
2012 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
45 |
Issue |
9 |
Pages |
3105--3113 |
|
|
Keywords |
Shape recognition; Deformable models; Shape modeling; Hand-drawn recognition |
|
|
Abstract |
In this paper we describe a framework to learn a model of shape variability in a set of patterns. The framework is based on the Active Appearance Model (AAM) and permits to combine shape deformations with appearance variability. We have used two modifications of the Blurred Shape Model (BSM) descriptor as basic shape and appearance features to learn the model. These modifications permit to overcome the rigidity of the original BSM, adapting it to the deformations of the shape to be represented. We have applied this framework to representation and classification of handwritten digits and symbols. We show that results of the proposed methodology outperform the original BSM approach. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0031-3203 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ AFV2012 |
Serial |
1982 |
|
Permanent link to this record |