toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Jose Manuel Alvarez; Theo Gevers; Antonio Lopez edit   pdf
doi  openurl
  Title (up) Learning photometric invariance for object detection Type Journal Article
  Year 2010 Publication International Journal of Computer Vision Abbreviated Journal IJCV  
  Volume 90 Issue 1 Pages 45-61  
  Keywords road detection  
  Abstract Impact factor: 3.508 (the last available from JCR2009SCI). Position 4/103 in the category Computer Science, Artificial Intelligence. Quartile
Color is a powerful visual cue in many computer vision applications such as image segmentation and object recognition. However, most of the existing color models depend on the imaging conditions that negatively affect the performance of the task at hand. Often, a reflection model (e.g., Lambertian or dichromatic reflectance) is used to derive color invariant models. However, this approach may be too restricted to model real-world scenes in which different reflectance mechanisms can hold simultaneously.
Therefore, in this paper, we aim to derive color invariance by learning from color models to obtain diversified color invariant ensembles. First, a photometrical orthogonal and non-redundant color model set is computed composed of both color variants and invariants. Then, the proposed method combines these color models to arrive at a diversified color ensemble yielding a proper balance between invariance (repeatability) and discriminative power (distinctiveness). To achieve this, our fusion method uses a multi-view approach to minimize the estimation error. In this way, the proposed method is robust to data uncertainty and produces properly diversified color invariant ensembles. Further, the proposed method is extended to deal with temporal data by predicting the evolution of observations over time.
Experiments are conducted on three different image datasets to validate the proposed method. Both the theoretical and experimental results show that the method is robust against severe variations in imaging conditions. The method is not restricted to a certain reflection model or parameter tuning, and outperforms state-of-the-art detection techniques in the field of object, skin and road recognition. Considering sequential data, the proposed method (extended to deal with future observations) outperforms the other methods
 
  Address  
  Corporate Author Thesis  
  Publisher Springer US Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0920-5691 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS;ISE Approved no  
  Call Number ADAS @ adas @ AGL2010c Serial 1451  
Permanent link to this record
 

 
Author Joan Serrat; Felipe Lumbreras; Idoia Ruiz edit   pdf
url  openurl
  Title (up) Learning to measure for preshipment garment sizing Type Journal Article
  Year 2018 Publication Measurement Abbreviated Journal MEASURE  
  Volume 130 Issue Pages 327-339  
  Keywords Apparel; Computer vision; Structured prediction; Regression  
  Abstract Clothing is still manually manufactured for the most part nowadays, resulting in discrepancies between nominal and real dimensions, and potentially ill-fitting garments. Hence, it is common in the apparel industry to manually perform measures at preshipment time. We present an automatic method to obtain such measures from a single image of a garment that speeds up this task. It is generic and extensible in the sense that it does not depend explicitly on the garment shape or type. Instead, it learns through a probabilistic graphical model to identify the different contour parts. Subsequently, a set of Lasso regressors, one per desired measure, can predict the actual values of the measures. We present results on a dataset of 130 images of jackets and 98 of pants, of varying sizes and styles, obtaining 1.17 and 1.22 cm of mean absolute error, respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; MSIAU; 600.122; 600.118 Approved no  
  Call Number Admin @ si @ SLR2018 Serial 3128  
Permanent link to this record
 

 
Author Joan Serrat; Ferran Diego; Felipe Lumbreras edit  openurl
  Title (up) Los faros delanteros a traves del objetivo Type Journal
  Year 2008 Publication UAB Divulga, Revista de divulgacion cientifica Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ SDL2008b Serial 1471  
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Meritxell Joanpere; Nuria Gorgorio; Lluis Albarracin edit   pdf
url  openurl
  Title (up) Mathematics learning opportunities when playing a Tower Defense Game Type Journal
  Year 2015 Publication International Journal of Serious Games Abbreviated Journal IJSG  
  Volume 2 Issue 4 Pages 57-71  
  Keywords Tower Defense game; learning opportunities; mathematics; problem solving; game design  
  Abstract A qualitative research study is presented herein with the purpose of identifying mathematics learning opportunities in students between 10 and 12 years old while playing a commercial version of a Tower Defense game. These learning opportunities are understood as mathematicisable moments of the game and involve the establishment of relationships between the game and mathematical problem solving. Based on the analysis of these mathematicisable moments, we conclude that the game can promote problem-solving processes and learning opportunities that can be associated with different mathematical contents that appears in mathematics curricula, thought it seems that teacher or new game elements might be needed to facilitate the processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.076 Approved no  
  Call Number Admin @ si @ HJG2015 Serial 2730  
Permanent link to this record
 

 
Author Jaume Amores edit   pdf
doi  openurl
  Title (up) MILDE: multiple instance learning by discriminative embedding Type Journal Article
  Year 2015 Publication Knowledge and Information Systems Abbreviated Journal KAIS  
  Volume 42 Issue 2 Pages 381-407  
  Keywords Multi-instance learning; Codebook; Bag of words  
  Abstract While the objective of the standard supervised learning problem is to classify feature vectors, in the multiple instance learning problem, the objective is to classify bags, where each bag contains multiple feature vectors. This represents a generalization of the standard problem, and this generalization becomes necessary in many real applications such as drug activity prediction, content-based image retrieval, and others. While the existing paradigms are based on learning the discriminant information either at the instance level or at the bag level, we propose to incorporate both levels of information. This is done by defining a discriminative embedding of the original space based on the responses of cluster-adapted instance classifiers. Results clearly show the advantage of the proposed method over the state of the art, where we tested the performance through a variety of well-known databases that come from real problems, and we also included an analysis of the performance using synthetically generated data.  
  Address  
  Corporate Author Thesis  
  Publisher Springer London Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0219-1377 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 601.042; 600.057; 600.076 Approved no  
  Call Number Admin @ si @ Amo2015 Serial 2383  
Permanent link to this record
 

 
Author Hannes Mueller; Andre Groeger; Jonathan Hersh; Andrea Matranga; Joan Serrat edit   pdf
url  doi
openurl 
  Title (up) Monitoring war destruction from space using machine learning Type Journal Article
  Year 2021 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal PNAS  
  Volume 118 Issue 23 Pages e2025400118  
  Keywords  
  Abstract Existing data on building destruction in conflict zones rely on eyewitness reports or manual detection, which makes it generally scarce, incomplete, and potentially biased. This lack of reliable data imposes severe limitations for media reporting, humanitarian relief efforts, human-rights monitoring, reconstruction initiatives, and academic studies of violent conflict. This article introduces an automated method of measuring destruction in high-resolution satellite images using deep-learning techniques combined with label augmentation and spatial and temporal smoothing, which exploit the underlying spatial and temporal structure of destruction. As a proof of concept, we apply this method to the Syrian civil war and reconstruct the evolution of damage in major cities across the country. Our approach allows generating destruction data with unprecedented scope, resolution, and frequency—and makes use of the ever-higher frequency at which satellite imagery becomes available.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.118 Approved no  
  Call Number Admin @ si @ MGH2021 Serial 3584  
Permanent link to this record
 

 
Author Akhil Gurram; Ahmet Faruk Tuna; Fengyi Shen; Onay Urfalioglu; Antonio Lopez edit   pdf
doi  openurl
  Title (up) Monocular Depth Estimation through Virtual-world Supervision and Real-world SfM Self-Supervision Type Journal Article
  Year 2021 Publication IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS  
  Volume 23 Issue 8 Pages 12738-12751  
  Keywords  
  Abstract Depth information is essential for on-board perception in autonomous driving and driver assistance. Monocular depth estimation (MDE) is very appealing since it allows for appearance and depth being on direct pixelwise correspondence without further calibration. Best MDE models are based on Convolutional Neural Networks (CNNs) trained in a supervised manner, i.e., assuming pixelwise ground truth (GT). Usually, this GT is acquired at training time through a calibrated multi-modal suite of sensors. However, also using only a monocular system at training time is cheaper and more scalable. This is possible by relying on structure-from-motion (SfM) principles to generate self-supervision. Nevertheless, problems of camouflaged objects, visibility changes, static-camera intervals, textureless areas, and scale ambiguity, diminish the usefulness of such self-supervision. In this paper, we perform monocular depth estimation by virtual-world supervision (MonoDEVS) and real-world SfM self-supervision. We compensate the SfM self-supervision limitations by leveraging virtual-world images with accurate semantic and depth supervision and addressing the virtual-to-real domain gap. Our MonoDEVSNet outperforms previous MDE CNNs trained on monocular and even stereo sequences.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.118 Approved no  
  Call Number Admin @ si @ GTS2021 Serial 3598  
Permanent link to this record
 

 
Author Angel Sappa; Cristhian A. Aguilera-Carrasco; Juan A. Carvajal Ayala; Miguel Oliveira; Dennis Romero; Boris X. Vintimilla; Ricardo Toledo edit   pdf
doi  openurl
  Title (up) Monocular visual odometry: A cross-spectral image fusion based approach Type Journal Article
  Year 2016 Publication Robotics and Autonomous Systems Abbreviated Journal RAS  
  Volume 85 Issue Pages 26-36  
  Keywords Monocular visual odometry; LWIR-RGB cross-spectral imaging; Image fusion  
  Abstract This manuscript evaluates the usage of fused cross-spectral images in a monocular visual odometry approach. Fused images are obtained through a Discrete Wavelet Transform (DWT) scheme, where the best setup is empirically obtained by means of a mutual information based evaluation metric. The objective is to have a flexible scheme where fusion parameters are adapted according to the characteristics of the given images. Visual odometry is computed from the fused monocular images using an off the shelf approach. Experimental results using data sets obtained with two different platforms are presented. Additionally, comparison with a previous approach as well as with monocular-visible/infrared spectra are also provided showing the advantages of the proposed scheme.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier B.V. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS;600.086; 600.076 Approved no  
  Call Number Admin @ si @SAC2016 Serial 2811  
Permanent link to this record
 

 
Author Meysam Madadi; Sergio Escalera; Jordi Gonzalez; Xavier Roca; Felipe Lumbreras edit  doi
openurl 
  Title (up) Multi-part body segmentation based on depth maps for soft biometry analysis Type Journal Article
  Year 2015 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 56 Issue Pages 14-21  
  Keywords 3D shape context; 3D point cloud alignment; Depth maps; Human body segmentation; Soft biometry analysis  
  Abstract This paper presents a novel method extracting biometric measures using depth sensors. Given a multi-part labeled training data, a new subject is aligned to the best model of the dataset, and soft biometrics such as lengths or circumference sizes of limbs and body are computed. The process is performed by training relevant pose clusters, defining a representative model, and fitting a 3D shape context descriptor within an iterative matching procedure. We show robust measures by applying orthogonal plates to body hull. We test our approach in a novel full-body RGB-Depth data set, showing accurate estimation of soft biometrics and better segmentation accuracy in comparison with random forest approach without requiring large training data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; ISE; ADAS; 600.076;600.049; 600.063; 600.054; 302.018;MILAB Approved no  
  Call Number Admin @ si @ MEG2015 Serial 2588  
Permanent link to this record
 

 
Author T. Mouats; N. Aouf; Angel Sappa; Cristhian A. Aguilera-Carrasco; Ricardo Toledo edit  doi
openurl 
  Title (up) Multi-Spectral Stereo Odometry Type Journal Article
  Year 2015 Publication IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS  
  Volume 16 Issue 3 Pages 1210-1224  
  Keywords Egomotion estimation; feature matching; multispectral odometry (MO); optical flow; stereo odometry; thermal imagery  
  Abstract In this paper, we investigate the problem of visual odometry for ground vehicles based on the simultaneous utilization of multispectral cameras. It encompasses a stereo rig composed of an optical (visible) and thermal sensors. The novelty resides in the localization of the cameras as a stereo setup rather
than two monocular cameras of different spectrums. To the best of our knowledge, this is the first time such task is attempted. Log-Gabor wavelets at different orientations and scales are used to extract interest points from both images. These are then described using a combination of frequency and spatial information within the local neighborhood. Matches between the pairs of multimodal images are computed using the cosine similarity function based
on the descriptors. Pyramidal Lucas–Kanade tracker is also introduced to tackle temporal feature matching within challenging sequences of the data sets. The vehicle egomotion is computed from the triangulated 3-D points corresponding to the matched features. A windowed version of bundle adjustment incorporating
Gauss–Newton optimization is utilized for motion estimation. An outlier removal scheme is also included within the framework to deal with outliers. Multispectral data sets were generated and used as test bed. They correspond to real outdoor scenarios captured using our multimodal setup. Finally, detailed results validating the proposed strategy are illustrated.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1524-9050 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.055; 600.076 Approved no  
  Call Number Admin @ si @ MAS2015a Serial 2533  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: