|
Records |
Links |
|
Author |
Adrien Gaidon; Antonio Lopez; Florent Perronnin |
|
|
Title |
The Reasonable Effectiveness of Synthetic Visual Data |
Type |
Journal Article |
|
Year |
2018 |
Publication |
International Journal of Computer Vision |
Abbreviated Journal |
IJCV |
|
|
Volume |
126 |
Issue |
9 |
Pages |
899–901 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.118 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GLP2018 |
Serial |
3180 |
|
Permanent link to this record |
|
|
|
|
Author |
Jiaolong Xu; Liang Xiao; Antonio Lopez |
|
|
Title |
Self-supervised Domain Adaptation for Computer Vision Tasks |
Type |
Journal Article |
|
Year |
2019 |
Publication |
IEEE Access |
Abbreviated Journal |
ACCESS |
|
|
Volume |
7 |
Issue |
|
Pages |
156694 - 156706 |
|
|
Keywords |
|
|
|
Abstract |
Recent progress of self-supervised visual representation learning has achieved remarkable success on many challenging computer vision benchmarks. However, whether these techniques can be used for domain adaptation has not been explored. In this work, we propose a generic method for self-supervised domain adaptation, using object recognition and semantic segmentation of urban scenes as use cases. Focusing on simple pretext/auxiliary tasks (e.g. image rotation prediction), we assess different learning strategies to improve domain adaptation effectiveness by self-supervision. Additionally, we propose two complementary strategies to further boost the domain adaptation accuracy on semantic segmentation within our method, consisting of prediction layer alignment and batch normalization calibration. The experimental results show adaptation levels comparable to most studied domain adaptation methods, thus, bringing self-supervision as a new alternative for reaching domain adaptation. The code is available at this link. https://github.com/Jiaolong/self-supervised-da. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.118 |
Approved |
no |
|
|
Call Number |
Admin @ si @ XXL2019 |
Serial |
3302 |
|
Permanent link to this record |
|
|
|
|
Author |
Cesar de Souza; Adrien Gaidon; Yohann Cabon; Naila Murray; Antonio Lopez |
|
|
Title |
Generating Human Action Videos by Coupling 3D Game Engines and Probabilistic Graphical Models |
Type |
Journal Article |
|
Year |
2020 |
Publication |
International Journal of Computer Vision |
Abbreviated Journal |
IJCV |
|
|
Volume |
128 |
Issue |
|
Pages |
1505–1536 |
|
|
Keywords |
Procedural generation; Human action recognition; Synthetic data; Physics |
|
|
Abstract |
Deep video action recognition models have been highly successful in recent years but require large quantities of manually-annotated data, which are expensive and laborious to obtain. In this work, we investigate the generation of synthetic training data for video action recognition, as synthetic data have been successfully used to supervise models for a variety of other computer vision tasks. We propose an interpretable parametric generative model of human action videos that relies on procedural generation, physics models and other components of modern game engines. With this model we generate a diverse, realistic, and physically plausible dataset of human action videos, called PHAV for “Procedural Human Action Videos”. PHAV contains a total of 39,982 videos, with more than 1000 examples for each of 35 action categories. Our video generation approach is not limited to existing motion capture sequences: 14 of these 35 categories are procedurally-defined synthetic actions. In addition, each video is represented with 6 different data modalities, including RGB, optical flow and pixel-level semantic labels. These modalities are generated almost simultaneously using the Multiple Render Targets feature of modern GPUs. In order to leverage PHAV, we introduce a deep multi-task (i.e. that considers action classes from multiple datasets) representation learning architecture that is able to simultaneously learn from synthetic and real video datasets, even when their action categories differ. Our experiments on the UCF-101 and HMDB-51 benchmarks suggest that combining our large set of synthetic videos with small real-world datasets can boost recognition performance. Our approach also significantly outperforms video representations produced by fine-tuning state-of-the-art unsupervised generative models of videos. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.124; 600.118;CIC |
Approved |
no |
|
|
Call Number |
Admin @ si @ SGC2019 |
Serial |
3303 |
|
Permanent link to this record |
|
|
|
|
Author |
Daniel Hernandez; Lukas Schneider; P. Cebrian; A. Espinosa; David Vazquez; Antonio Lopez; Uwe Franke; Marc Pollefeys; Juan Carlos Moure |
|
|
Title |
Slanted Stixels: A way to represent steep streets |
Type |
Journal Article |
|
Year |
2019 |
Publication |
International Journal of Computer Vision |
Abbreviated Journal |
IJCV |
|
|
Volume |
127 |
Issue |
|
Pages |
1643–1658 |
|
|
Keywords |
|
|
|
Abstract |
This work presents and evaluates a novel compact scene representation based on Stixels that infers geometric and semantic information. Our approach overcomes the previous rather restrictive geometric assumptions for Stixels by introducing a novel depth model to account for non-flat roads and slanted objects. Both semantic and depth cues are used jointly to infer the scene representation in a sound global energy minimization formulation. Furthermore, a novel approximation scheme is introduced in order to significantly reduce the computational complexity of the Stixel algorithm, and then achieve real-time computation capabilities. The idea is to first perform an over-segmentation of the image, discarding the unlikely Stixel cuts, and apply the algorithm only on the remaining Stixel cuts. This work presents a novel over-segmentation strategy based on a fully convolutional network, which outperforms an approach based on using local extrema of the disparity map. We evaluate the proposed methods in terms of semantic and geometric accuracy as well as run-time on four publicly available benchmark datasets. Our approach maintains accuracy on flat road scene datasets while improving substantially on a novel non-flat road dataset. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.118; 600.124 |
Approved |
no |
|
|
Call Number |
Admin @ si @ HSC2019 |
Serial |
3304 |
|
Permanent link to this record |
|
|
|
|
Author |
Zhijie Fang; Antonio Lopez |
|
|
Title |
Intention Recognition of Pedestrians and Cyclists by 2D Pose Estimation |
Type |
Journal Article |
|
Year |
2019 |
Publication |
IEEE Transactions on Intelligent Transportation Systems |
Abbreviated Journal |
TITS |
|
|
Volume |
21 |
Issue |
11 |
Pages |
4773 - 4783 |
|
|
Keywords |
|
|
|
Abstract |
Anticipating the intentions of vulnerable road users (VRUs) such as pedestrians and cyclists is critical for performing safe and comfortable driving maneuvers. This is the case for human driving and, thus, should be taken into account by systems providing any level of driving assistance, from advanced driver assistant systems (ADAS) to fully autonomous vehicles (AVs). In this paper, we show how the latest advances on monocular vision-based human pose estimation, i.e. those relying on deep Convolutional Neural Networks (CNNs), enable to recognize the intentions of such VRUs. In the case of cyclists, we assume that they follow traffic rules to indicate future maneuvers with arm signals. In the case of pedestrians, no indications can be assumed. Instead, we hypothesize that the walking pattern of a pedestrian allows to determine if he/she has the intention of crossing the road in the path of the ego-vehicle, so that the ego-vehicle must maneuver accordingly (e.g. slowing down or stopping). In this paper, we show how the same methodology can be used for recognizing pedestrians and cyclists' intentions. For pedestrians, we perform experiments on the JAAD dataset. For cyclists, we did not found an analogous dataset, thus, we created our own one by acquiring and annotating videos which we share with the research community. Overall, the proposed pipeline provides new state-of-the-art results on the intention recognition of VRUs. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.118 |
Approved |
no |
|
|
Call Number |
Admin @ si @ FaL2019 |
Serial |
3305 |
|
Permanent link to this record |
|
|
|
|
Author |
Akhil Gurram; Onay Urfalioglu; Ibrahim Halfaoui; Fahd Bouzaraa; Antonio Lopez |
|
|
Title |
Semantic Monocular Depth Estimation Based on Artificial Intelligence |
Type |
Journal Article |
|
Year |
2020 |
Publication |
IEEE Intelligent Transportation Systems Magazine |
Abbreviated Journal |
ITSM |
|
|
Volume |
13 |
Issue |
4 |
Pages |
99-103 |
|
|
Keywords |
|
|
|
Abstract |
Depth estimation provides essential information to perform autonomous driving and driver assistance. A promising line of work consists of introducing additional semantic information about the traffic scene when training CNNs for depth estimation. In practice, this means that the depth data used for CNN training is complemented with images having pixel-wise semantic labels where the same raw training data is associated with both types of ground truth, i.e., depth and semantic labels. The main contribution of this paper is to show that this hard constraint can be circumvented, i.e., that we can train CNNs for depth estimation by leveraging the depth and semantic information coming from heterogeneous datasets. In order to illustrate the benefits of our approach, we combine KITTI depth and Cityscapes semantic segmentation datasets, outperforming state-of-the-art results on monocular depth estimation. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.124; 600.118 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GUH2019 |
Serial |
3306 |
|
Permanent link to this record |
|
|
|
|
Author |
Juan Jose Rubio; Takahiro Kashiwa; Teera Laiteerapong; Wenlong Deng; Kohei Nagai; Sergio Escalera; Kotaro Nakayama; Yutaka Matsuo; Helmut Prendinger |
|
|
Title |
Multi-class structural damage segmentation using fully convolutional networks |
Type |
Journal Article |
|
Year |
2019 |
Publication |
Computers in Industry |
Abbreviated Journal |
COMPUTIND |
|
|
Volume |
112 |
Issue |
|
Pages |
103121 |
|
|
Keywords |
Bridge damage detection; Deep learning; Semantic segmentation |
|
|
Abstract |
Structural Health Monitoring (SHM) has benefited from computer vision and more recently, Deep Learning approaches, to accurately estimate the state of deterioration of infrastructure. In our work, we test Fully Convolutional Networks (FCNs) with a dataset of deck areas of bridges for damage segmentation. We create a dataset for delamination and rebar exposure that has been collected from inspection records of bridges in Niigata Prefecture, Japan. The dataset consists of 734 images with three labels per image, which makes it the largest dataset of images of bridge deck damage. This data allows us to estimate the performance of our method based on regions of agreement, which emulates the uncertainty of in-field inspections. We demonstrate the practicality of FCNs to perform automated semantic segmentation of surface damages. Our model achieves a mean accuracy of 89.7% for delamination and 78.4% for rebar exposure, and a weighted F1 score of 81.9%. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA; no proj;MILAB;ADAS |
Approved |
no |
|
|
Call Number |
Admin @ si @ RKL2019 |
Serial |
3315 |
|
Permanent link to this record |
|
|
|
|
Author |
Fei Yang; Luis Herranz; Joost Van de Weijer; Jose Antonio Iglesias; Antonio Lopez; Mikhail Mozerov |
|
|
Title |
Variable Rate Deep Image Compression with Modulated Autoencoder |
Type |
Journal Article |
|
Year |
2020 |
Publication |
IEEE Signal Processing Letters |
Abbreviated Journal |
SPL |
|
|
Volume |
27 |
Issue |
|
Pages |
331-335 |
|
|
Keywords |
|
|
|
Abstract |
Variable rate is a requirement for flexible and adaptable image and video compression. However, deep image compression methods (DIC) are optimized for a single fixed rate-distortion (R-D) tradeoff. While this can be addressed by training multiple models for different tradeoffs, the memory requirements increase proportionally to the number of models. Scaling the bottleneck representation of a shared autoencoder can provide variable rate compression with a single shared autoencoder. However, the R-D performance using this simple mechanism degrades in low bitrates, and also shrinks the effective range of bitrates. To address these limitations, we formulate the problem of variable R-D optimization for DIC, and propose modulated autoencoders (MAEs), where the representations of a shared autoencoder are adapted to the specific R-D tradeoff via a modulation network. Jointly training this modulated autoencoder and the modulation network provides an effective way to navigate the R-D operational curve. Our experiments show that the proposed method can achieve almost the same R-D performance of independent models with significantly fewer parameters. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
LAMP; ADAS; 600.141; 600.120; 600.118;ISE;CIC |
Approved |
no |
|
|
Call Number |
Admin @ si @ YHW2020 |
Serial |
3346 |
|
Permanent link to this record |
|
|
|
|
Author |
Gabriel Villalonga; Joost Van de Weijer; Antonio Lopez |
|
|
Title |
Recognizing new classes with synthetic data in the loop: application to traffic sign recognition |
Type |
Journal Article |
|
Year |
2020 |
Publication |
Sensors |
Abbreviated Journal |
SENS |
|
|
Volume |
20 |
Issue |
3 |
Pages |
583 |
|
|
Keywords |
|
|
|
Abstract |
On-board vision systems may need to increase the number of classes that can be recognized in a relatively short period. For instance, a traffic sign recognition system may suddenly be required to recognize new signs. Since collecting and annotating samples of such new classes may need more time than we wish, especially for uncommon signs, we propose a method to generate these samples by combining synthetic images and Generative Adversarial Network (GAN) technology. In particular, the GAN is trained on synthetic and real-world samples from known classes to perform synthetic-to-real domain adaptation, but applied to synthetic samples of the new classes. Using the Tsinghua dataset with a synthetic counterpart, SYNTHIA-TS, we have run an extensive set of experiments. The results show that the proposed method is indeed effective, provided that we use a proper Convolutional Neural Network (CNN) to perform the traffic sign recognition (classification) task as well as a proper GAN to transform the synthetic images. Here, a ResNet101-based classifier and domain adaptation based on CycleGAN performed extremely well for a ratio∼ 1/4 for new/known classes; even for more challenging ratios such as∼ 4/1, the results are also very positive. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
LAMP; ADAS; 600.118; 600.120;CIC |
Approved |
no |
|
|
Call Number |
Admin @ si @ VWL2020 |
Serial |
3405 |
|
Permanent link to this record |
|
|
|
|
Author |
Akhil Gurram; Ahmet Faruk Tuna; Fengyi Shen; Onay Urfalioglu; Antonio Lopez |
|
|
Title |
Monocular Depth Estimation through Virtual-world Supervision and Real-world SfM Self-Supervision |
Type |
Journal Article |
|
Year |
2021 |
Publication |
IEEE Transactions on Intelligent Transportation Systems |
Abbreviated Journal |
TITS |
|
|
Volume |
23 |
Issue |
8 |
Pages |
12738-12751 |
|
|
Keywords |
|
|
|
Abstract |
Depth information is essential for on-board perception in autonomous driving and driver assistance. Monocular depth estimation (MDE) is very appealing since it allows for appearance and depth being on direct pixelwise correspondence without further calibration. Best MDE models are based on Convolutional Neural Networks (CNNs) trained in a supervised manner, i.e., assuming pixelwise ground truth (GT). Usually, this GT is acquired at training time through a calibrated multi-modal suite of sensors. However, also using only a monocular system at training time is cheaper and more scalable. This is possible by relying on structure-from-motion (SfM) principles to generate self-supervision. Nevertheless, problems of camouflaged objects, visibility changes, static-camera intervals, textureless areas, and scale ambiguity, diminish the usefulness of such self-supervision. In this paper, we perform monocular depth estimation by virtual-world supervision (MonoDEVS) and real-world SfM self-supervision. We compensate the SfM self-supervision limitations by leveraging virtual-world images with accurate semantic and depth supervision and addressing the virtual-to-real domain gap. Our MonoDEVSNet outperforms previous MDE CNNs trained on monocular and even stereo sequences. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.118 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GTS2021 |
Serial |
3598 |
|
Permanent link to this record |