toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Jiaolong Xu; David Vazquez; Antonio Lopez; Javier Marin; Daniel Ponsa edit   pdf
doi  isbn
openurl 
  Title Learning a Part-based Pedestrian Detector in Virtual World Type Journal Article
  Year 2014 Publication (up) IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS  
  Volume 15 Issue 5 Pages 2121-2131  
  Keywords Domain Adaptation; Pedestrian Detection; Virtual Worlds  
  Abstract Detecting pedestrians with on-board vision systems is of paramount interest for assisting drivers to prevent vehicle-to-pedestrian accidents. The core of a pedestrian detector is its classification module, which aims at deciding if a given image window contains a pedestrian. Given the difficulty of this task, many classifiers have been proposed during the last fifteen years. Among them, the so-called (deformable) part-based classifiers including multi-view modeling are usually top ranked in accuracy. Training such classifiers is not trivial since a proper aspect clustering and spatial part alignment of the pedestrian training samples are crucial for obtaining an accurate classifier. In this paper, first we perform automatic aspect clustering and part alignment by using virtual-world pedestrians, i.e., human annotations are not required. Second, we use a mixture-of-parts approach that allows part sharing among different aspects. Third, these proposals are integrated in a learning framework which also allows to incorporate real-world training data to perform domain adaptation between virtual- and real-world cameras. Overall, the obtained results on four popular on-board datasets show that our proposal clearly outperforms the state-of-the-art deformable part-based detector known as latent SVM.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1931-0587 ISBN 978-1-4673-2754-1 Medium  
  Area Expedition Conference  
  Notes ADAS; 600.076 Approved no  
  Call Number ADAS @ adas @ XVL2014 Serial 2433  
Permanent link to this record
 

 
Author Jose Manuel Alvarez; Antonio Lopez; Theo Gevers; Felipe Lumbreras edit   pdf
doi  openurl
  Title Combining Priors, Appearance and Context for Road Detection Type Journal Article
  Year 2014 Publication (up) IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS  
  Volume 15 Issue 3 Pages 1168-1178  
  Keywords Illuminant invariance; lane markings; road detection; road prior; road scene understanding; vanishing point; 3-D scene layout  
  Abstract Detecting the free road surface ahead of a moving vehicle is an important research topic in different areas of computer vision, such as autonomous driving or car collision warning.
Current vision-based road detection methods are usually based solely on low-level features. Furthermore, they generally assume structured roads, road homogeneity, and uniform lighting conditions, constraining their applicability in real-world scenarios. In this paper, road priors and contextual information are introduced for road detection. First, we propose an algorithm to estimate road priors online using geographical information, providing relevant initial information about the road location. Then, contextual cues, including horizon lines, vanishing points, lane markings, 3-D scene layout, and road geometry, are used in addition to low-level cues derived from the appearance of roads. Finally, a generative model is used to combine these cues and priors, leading to a road detection method that is, to a large degree, robust to varying imaging conditions, road types, and scenarios.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1524-9050 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.076;ISE Approved no  
  Call Number Admin @ si @ ALG2014 Serial 2501  
Permanent link to this record
 

 
Author T. Mouats; N. Aouf; Angel Sappa; Cristhian A. Aguilera-Carrasco; Ricardo Toledo edit  doi
openurl 
  Title Multi-Spectral Stereo Odometry Type Journal Article
  Year 2015 Publication (up) IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS  
  Volume 16 Issue 3 Pages 1210-1224  
  Keywords Egomotion estimation; feature matching; multispectral odometry (MO); optical flow; stereo odometry; thermal imagery  
  Abstract In this paper, we investigate the problem of visual odometry for ground vehicles based on the simultaneous utilization of multispectral cameras. It encompasses a stereo rig composed of an optical (visible) and thermal sensors. The novelty resides in the localization of the cameras as a stereo setup rather
than two monocular cameras of different spectrums. To the best of our knowledge, this is the first time such task is attempted. Log-Gabor wavelets at different orientations and scales are used to extract interest points from both images. These are then described using a combination of frequency and spatial information within the local neighborhood. Matches between the pairs of multimodal images are computed using the cosine similarity function based
on the descriptors. Pyramidal Lucas–Kanade tracker is also introduced to tackle temporal feature matching within challenging sequences of the data sets. The vehicle egomotion is computed from the triangulated 3-D points corresponding to the matched features. A windowed version of bundle adjustment incorporating
Gauss–Newton optimization is utilized for motion estimation. An outlier removal scheme is also included within the framework to deal with outliers. Multispectral data sets were generated and used as test bed. They correspond to real outdoor scenarios captured using our multimodal setup. Finally, detailed results validating the proposed strategy are illustrated.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1524-9050 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.055; 600.076 Approved no  
  Call Number Admin @ si @ MAS2015a Serial 2533  
Permanent link to this record
 

 
Author Zhijie Fang; Antonio Lopez edit  url
doi  openurl
  Title Intention Recognition of Pedestrians and Cyclists by 2D Pose Estimation Type Journal Article
  Year 2019 Publication (up) IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS  
  Volume Issue Pages  
  Keywords  
  Abstract Anticipating the intentions of vulnerable road users (VRUs) such as pedestrians and cyclists is critical for performing safe and comfortable driving maneuvers. This is the case for human driving and, thus, should be taken into account by systems providing any level of driving assistance, from advanced driver assistant systems (ADAS) to fully autonomous vehicles (AVs). In this paper, we show how the latest advances on monocular vision-based human pose estimation, i.e. those relying on deep Convolutional Neural Networks (CNNs), enable to recognize the intentions of such VRUs. In the case of cyclists, we assume that they follow traffic rules to indicate future maneuvers with arm signals. In the case of pedestrians, no indications can be assumed. Instead, we hypothesize that the walking pattern of a pedestrian allows to determine if he/she has the intention of crossing the road in the path of the ego-vehicle, so that the ego-vehicle must maneuver accordingly (e.g. slowing down or stopping). In this paper, we show how the same methodology can be used for recognizing pedestrians and cyclists' intentions. For pedestrians, we perform experiments on the JAAD dataset. For cyclists, we did not found an analogous dataset, thus, we created our own one by acquiring and annotating videos which we share with the research community. Overall, the proposed pipeline provides new state-of-the-art results on the intention recognition of VRUs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.118 Approved no  
  Call Number Admin @ si @ FaL2019 Serial 3305  
Permanent link to this record
 

 
Author Yi Xiao; Felipe Codevilla; Akhil Gurram; Onay Urfalioglu; Antonio Lopez edit   pdf
url  doi
openurl 
  Title Multimodal end-to-end autonomous driving Type Journal Article
  Year 2020 Publication (up) IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS  
  Volume Issue Pages  
  Keywords  
  Abstract A crucial component of an autonomous vehicle (AV) is the artificial intelligence (AI) is able to drive towards a desired destination. Today, there are different paradigms addressing the development of AI drivers. On the one hand, we find modular pipelines, which divide the driving task into sub-tasks such as perception and maneuver planning and control. On the other hand, we find end-to-end driving approaches that try to learn a direct mapping from input raw sensor data to vehicle control signals. The later are relatively less studied, but are gaining popularity since they are less demanding in terms of sensor data annotation. This paper focuses on end-to-end autonomous driving. So far, most proposals relying on this paradigm assume RGB images as input sensor data. However, AVs will not be equipped only with cameras, but also with active sensors providing accurate depth information (e.g., LiDARs). Accordingly, this paper analyses whether combining RGB and depth modalities, i.e. using RGBD data, produces better end-to-end AI drivers than relying on a single modality. We consider multimodality based on early, mid and late fusion schemes, both in multisensory and single-sensor (monocular depth estimation) settings. Using the CARLA simulator and conditional imitation learning (CIL), we show how, indeed, early fusion multimodality outperforms single-modality.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ XCG2020 Serial 3490  
Permanent link to this record
 

 
Author A.F. Sole; S. Ngan; G. Sapiro; X. Hu; Antonio Lopez edit   pdf
openurl 
  Title Anisotropic 2-D and 3-D Averaging of fMRI Signals Type Journal Article
  Year 2001 Publication (up) IEEE Transactions on Medical Imaging, 20(2): 86–93 (IF: 3.142) Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ SNS2001 Serial 165  
Permanent link to this record
 

 
Author Ferran Diego; Joan Serrat; Antonio Lopez edit   pdf
doi  openurl
  Title Joint spatio-temporal alignment of sequences Type Journal Article
  Year 2013 Publication (up) IEEE Transactions on Multimedia Abbreviated Journal TMM  
  Volume 15 Issue 6 Pages 1377-1387  
  Keywords video alignment  
  Abstract Video alignment is important in different areas of computer vision such as wide baseline matching, action recognition, change detection, video copy detection and frame dropping prevention. Current video alignment methods usually deal with a relatively simple case of fixed or rigidly attached cameras or simultaneous acquisition. Therefore, in this paper we propose a joint video alignment for bringing two video sequences into a spatio-temporal alignment. Specifically, the novelty of the paper is to formulate the video alignment to fold the spatial and temporal alignment into a single alignment framework. This simultaneously satisfies a frame-correspondence and frame-alignment similarity; exploiting the knowledge among neighbor frames by a standard pairwise Markov random field (MRF). This new formulation is able to handle the alignment of sequences recorded at different times by independent moving cameras that follows a similar trajectory, and also generalizes the particular cases that of fixed geometric transformation and/or linear temporal mapping. We conduct experiments on different scenarios such as sequences recorded simultaneously or by moving cameras to validate the robustness of the proposed approach. The proposed method provides the highest video alignment accuracy compared to the state-of-the-art methods on sequences recorded from vehicles driving along the same track at different times.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-9210 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ DSL2013; ADAS @ adas @ Serial 2228  
Permanent link to this record
 

 
Author Katerine Diaz; Francesc J. Ferri; W. Diaz edit  doi
openurl 
  Title Incremental Generalized Discriminative Common Vectors for Image Classification Type Journal Article
  Year 2015 Publication (up) IEEE Transactions on Neural Networks and Learning Systems Abbreviated Journal TNNLS  
  Volume 26 Issue 8 Pages 1761 - 1775  
  Keywords  
  Abstract Subspace-based methods have become popular due to their ability to appropriately represent complex data in such a way that both dimensionality is reduced and discriminativeness is enhanced. Several recent works have concentrated on the discriminative common vector (DCV) method and other closely related algorithms also based on the concept of null space. In this paper, we present a generalized incremental formulation of the DCV methods, which allows the update of a given model by considering the addition of new examples even from unseen classes. Having efficient incremental formulations of well-behaved batch algorithms allows us to conveniently adapt previously trained classifiers without the need of recomputing them from scratch. The proposed generalized incremental method has been empirically validated in different case studies from different application domains (faces, objects, and handwritten digits) considering several different scenarios in which new data are continuously added at different rates starting from an initial model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2162-237X ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.076 Approved no  
  Call Number Admin @ si @ DFD2015 Serial 2547  
Permanent link to this record
 

 
Author Daniel Hernandez; Antonio Espinosa; David Vazquez; Antonio Lopez; Juan C. Moure edit  url
doi  openurl
  Title 3D Perception With Slanted Stixels on GPU Type Journal Article
  Year 2021 Publication (up) IEEE Transactions on Parallel and Distributed Systems Abbreviated Journal TPDS  
  Volume 32 Issue 10 Pages 2434-2447  
  Keywords Daniel Hernandez-Juarez; Antonio Espinosa; David Vazquez; Antonio M. Lopez; Juan C. Moure  
  Abstract This article presents a GPU-accelerated software design of the recently proposed model of Slanted Stixels, which represents the geometric and semantic information of a scene in a compact and accurate way. We reformulate the measurement depth model to reduce the computational complexity of the algorithm, relying on the confidence of the depth estimation and the identification of invalid values to handle outliers. The proposed massively parallel scheme and data layout for the irregular computation pattern that corresponds to a Dynamic Programming paradigm is described and carefully analyzed in performance terms. Performance is shown to scale gracefully on current generation embedded GPUs. We assess the proposed methods in terms of semantic and geometric accuracy as well as run-time performance on three publicly available benchmark datasets. Our approach achieves real-time performance with high accuracy for 2048 × 1024 image sizes and 4 × 4 Stixel resolution on the low-power embedded GPU of an NVIDIA Tegra Xavier.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.124; 600.118 Approved no  
  Call Number Admin @ si @ HEV2021 Serial 3561  
Permanent link to this record
 

 
Author Jiaolong Xu; Sebastian Ramos; David Vazquez; Antonio Lopez edit   pdf
doi  openurl
  Title Domain Adaptation of Deformable Part-Based Models Type Journal Article
  Year 2014 Publication (up) IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 36 Issue 12 Pages 2367-2380  
  Keywords Domain Adaptation; Pedestrian Detection  
  Abstract The accuracy of object classifiers can significantly drop when the training data (source domain) and the application scenario (target domain) have inherent differences. Therefore, adapting the classifiers to the scenario in which they must operate is of paramount importance. We present novel domain adaptation (DA) methods for object detection. As proof of concept, we focus on adapting the state-of-the-art deformable part-based model (DPM) for pedestrian detection. We introduce an adaptive structural SVM (A-SSVM) that adapts a pre-learned classifier between different domains. By taking into account the inherent structure in feature space (e.g., the parts in a DPM), we propose a structure-aware A-SSVM (SA-SSVM). Neither A-SSVM nor SA-SSVM needs to revisit the source-domain training data to perform the adaptation. Rather, a low number of target-domain training examples (e.g., pedestrians) are used. To address the scenario where there are no target-domain annotated samples, we propose a self-adaptive DPM based on a self-paced learning (SPL) strategy and a Gaussian Process Regression (GPR). Two types of adaptation tasks are assessed: from both synthetic pedestrians and general persons (PASCAL VOC) to pedestrians imaged from an on-board camera. Results show that our proposals avoid accuracy drops as high as 15 points when comparing adapted and non-adapted detectors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0162-8828 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.057; 600.054; 601.217; 600.076 Approved no  
  Call Number ADAS @ adas @ XRV2014b Serial 2436  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: