toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author David Geronimo; Antonio Lopez; Angel Sappa; Thorsten Graf edit   pdf
url  doi
openurl 
  Title Survey on Pedestrian Detection for Advanced Driver Assistance Systems Type Journal Article
  Year 2010 Publication (down) IEEE Transaction on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 32 Issue 7 Pages 1239–1258  
  Keywords ADAS, pedestrian detection, on-board vision, survey  
  Abstract Advanced driver assistance systems (ADASs), and particularly pedestrian protection systems (PPSs), have become an active research area aimed at improving traffic safety. The major challenge of PPSs is the development of reliable on-board pedestrian detection systems. Due to the varying appearance of pedestrians (e.g., different clothes, changing size, aspect ratio, and dynamic shape) and the unstructured environment, it is very difficult to cope with the demanded robustness of this kind of system. Two problems arising in this research area are the lack of public benchmarks and the difficulty in reproducing many of the proposed methods, which makes it difficult to compare the approaches. As a result, surveying the literature by enumerating the proposals one-after-another is not the most useful way to provide a comparative point of view. Accordingly, we present a more convenient strategy to survey the different approaches. We divide the problem of detecting pedestrians from images into different processing steps, each with attached responsibilities. Then, the different proposed methods are analyzed and classified with respect to each processing stage, favoring a comparative viewpoint. Finally, discussion of the important topics is presented, putting special emphasis on the future needs and challenges.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0162-8828 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ GLS2010 Serial 1340  
Permanent link to this record
 

 
Author Yu Jie; Jaume Amores; N. Sebe; Petia Radeva; Tian Qi edit  openurl
  Title Distance Learning for Similarity Estimation Type Journal
  Year 2008 Publication (down) IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.30(3):451–462 Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS;MILAB Approved no  
  Call Number ADAS @ adas @ JAS2008 Serial 961  
Permanent link to this record
 

 
Author Fei Yang; Luis Herranz; Joost Van de Weijer; Jose Antonio Iglesias; Antonio Lopez; Mikhail Mozerov edit   pdf
url  doi
openurl 
  Title Variable Rate Deep Image Compression with Modulated Autoencoder Type Journal Article
  Year 2020 Publication (down) IEEE Signal Processing Letters Abbreviated Journal SPL  
  Volume 27 Issue Pages 331-335  
  Keywords  
  Abstract Variable rate is a requirement for flexible and adaptable image and video compression. However, deep image compression methods (DIC) are optimized for a single fixed rate-distortion (R-D) tradeoff. While this can be addressed by training multiple models for different tradeoffs, the memory requirements increase proportionally to the number of models. Scaling the bottleneck representation of a shared autoencoder can provide variable rate compression with a single shared autoencoder. However, the R-D performance using this simple mechanism degrades in low bitrates, and also shrinks the effective range of bitrates. To address these limitations, we formulate the problem of variable R-D optimization for DIC, and propose modulated autoencoders (MAEs), where the representations of a shared autoencoder are adapted to the specific R-D tradeoff via a modulation network. Jointly training this modulated autoencoder and the modulation network provides an effective way to navigate the R-D operational curve. Our experiments show that the proposed method can achieve almost the same R-D performance of independent models with significantly fewer parameters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; ADAS; 600.141; 600.120; 600.118 Approved no  
  Call Number Admin @ si @ YHW2020 Serial 3346  
Permanent link to this record
 

 
Author Fernando Barrera; Felipe Lumbreras; Angel Sappa edit   pdf
doi  openurl
  Title Multimodal Stereo Vision System: 3D Data Extraction and Algorithm Evaluation Type Journal Article
  Year 2012 Publication (down) IEEE Journal of Selected Topics in Signal Processing Abbreviated Journal J-STSP  
  Volume 6 Issue 5 Pages 437-446  
  Keywords  
  Abstract This paper proposes an imaging system for computing sparse depth maps from multispectral images. A special stereo head consisting of an infrared and a color camera defines the proposed multimodal acquisition system. The cameras are rigidly attached so that their image planes are parallel. Details about the calibration and image rectification procedure are provided. Sparse disparity maps are obtained by the combined use of mutual information enriched with gradient information. The proposed approach is evaluated using a Receiver Operating Characteristics curve. Furthermore, a multispectral dataset, color and infrared images, together with their corresponding ground truth disparity maps, is generated and used as a test bed. Experimental results in real outdoor scenarios are provided showing its viability and that the proposed approach is not restricted to a specific domain.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-4553 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ BLS2012b Serial 2155  
Permanent link to this record
 

 
Author Akhil Gurram; Onay Urfalioglu; Ibrahim Halfaoui; Fahd Bouzaraa; Antonio Lopez edit  url
doi  openurl
  Title Semantic Monocular Depth Estimation Based on Artificial Intelligence Type Journal Article
  Year 2020 Publication (down) IEEE Intelligent Transportation Systems Magazine Abbreviated Journal ITSM  
  Volume 13 Issue 4 Pages 99-103  
  Keywords  
  Abstract Depth estimation provides essential information to perform autonomous driving and driver assistance. A promising line of work consists of introducing additional semantic information about the traffic scene when training CNNs for depth estimation. In practice, this means that the depth data used for CNN training is complemented with images having pixel-wise semantic labels where the same raw training data is associated with both types of ground truth, i.e., depth and semantic labels. The main contribution of this paper is to show that this hard constraint can be circumvented, i.e., that we can train CNNs for depth estimation by leveraging the depth and semantic information coming from heterogeneous datasets. In order to illustrate the benefits of our approach, we combine KITTI depth and Cityscapes semantic segmentation datasets, outperforming state-of-the-art results on monocular depth estimation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.124; 600.118 Approved no  
  Call Number Admin @ si @ GUH2019 Serial 3306  
Permanent link to this record
 

 
Author Katerine Diaz; Jesus Martinez del Rincon; Aura Hernandez-Sabate; Debora Gil edit   pdf
doi  openurl
  Title Continuous head pose estimation using manifold subspace embedding and multivariate regression Type Journal Article
  Year 2018 Publication (down) IEEE Access Abbreviated Journal ACCESS  
  Volume 6 Issue Pages 18325 - 18334  
  Keywords Head Pose estimation; HOG features; Generalized Discriminative Common Vectors; B-splines; Multiple linear regression  
  Abstract In this paper, a continuous head pose estimation system is proposed to estimate yaw and pitch head angles from raw facial images. Our approach is based on manifold learningbased methods, due to their promising generalization properties shown for face modelling from images. The method combines histograms of oriented gradients, generalized discriminative common vectors and continuous local regression to achieve successful performance. Our proposal was tested on multiple standard face datasets, as well as in a realistic scenario. Results show a considerable performance improvement and a higher consistence of our model in comparison with other state-of-art methods, with angular errors varying between 9 and 17 degrees.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169-3536 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.118 Approved no  
  Call Number Admin @ si @ DMH2018b Serial 3091  
Permanent link to this record
 

 
Author Jiaolong Xu; Liang Xiao; Antonio Lopez edit   pdf
doi  openurl
  Title Self-supervised Domain Adaptation for Computer Vision Tasks Type Journal Article
  Year 2019 Publication (down) IEEE Access Abbreviated Journal ACCESS  
  Volume 7 Issue Pages 156694 - 156706  
  Keywords  
  Abstract Recent progress of self-supervised visual representation learning has achieved remarkable success on many challenging computer vision benchmarks. However, whether these techniques can be used for domain adaptation has not been explored. In this work, we propose a generic method for self-supervised domain adaptation, using object recognition and semantic segmentation of urban scenes as use cases. Focusing on simple pretext/auxiliary tasks (e.g. image rotation prediction), we assess different learning strategies to improve domain adaptation effectiveness by self-supervision. Additionally, we propose two complementary strategies to further boost the domain adaptation accuracy on semantic segmentation within our method, consisting of prediction layer alignment and batch normalization calibration. The experimental results show adaptation levels comparable to most studied domain adaptation methods, thus, bringing self-supervision as a new alternative for reaching domain adaptation. The code is available at this link. https://github.com/Jiaolong/self-supervised-da.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.118 Approved no  
  Call Number Admin @ si @ XXL2019 Serial 3302  
Permanent link to this record
 

 
Author Gabriel Villalonga; Antonio Lopez edit   pdf
doi  openurl
  Title Co-Training for On-Board Deep Object Detection Type Journal Article
  Year 2020 Publication (down) IEEE Access Abbreviated Journal ACCESS  
  Volume Issue Pages 194441 - 194456  
  Keywords  
  Abstract Providing ground truth supervision to train visual models has been a bottleneck over the years, exacerbated by domain shifts which degenerate the performance of such models. This was the case when visual tasks relied on handcrafted features and shallow machine learning and, despite its unprecedented performance gains, the problem remains open within the deep learning paradigm due to its data-hungry nature. Best performing deep vision-based object detectors are trained in a supervised manner by relying on human-labeled bounding boxes which localize class instances (i.e. objects) within the training images. Thus, object detection is one of such tasks for which human labeling is a major bottleneck. In this article, we assess co-training as a semi-supervised learning method for self-labeling objects in unlabeled images, so reducing the human-labeling effort for developing deep object detectors. Our study pays special attention to a scenario involving domain shift; in particular, when we have automatically generated virtual-world images with object bounding boxes and we have real-world images which are unlabeled. Moreover, we are particularly interested in using co-training for deep object detection in the context of driver assistance systems and/or self-driving vehicles. Thus, using well-established datasets and protocols for object detection in these application contexts, we will show how co-training is a paradigm worth to pursue for alleviating object labeling, working both alone and together with task-agnostic domain adaptation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.118 Approved no  
  Call Number Admin @ si @ ViL2020 Serial 3488  
Permanent link to this record
 

 
Author J.S. Cope; P.Remagnino; S.Mannan; Katerine Diaz; Francesc J. Ferri; P.Wilkin edit  url
doi  openurl
  Title Reverse Engineering Expert Visual Observations: From Fixations To The Learning Of Spatial Filters With A Neural-Gas Algorithm Type Journal Article
  Year 2013 Publication (down) Expert Systems with Applications Abbreviated Journal EXWA  
  Volume 40 Issue 17 Pages 6707-6712  
  Keywords Neural gas; Expert vision; Eye-tracking; Fixations  
  Abstract Human beings can become experts in performing specific vision tasks, for example, doctors analysing medical images, or botanists studying leaves. With sufficient knowledge and experience, people can become very efficient at such tasks. When attempting to perform these tasks with a machine vision system, it would be highly beneficial to be able to replicate the process which the expert undergoes. Advances in eye-tracking technology can provide data to allow us to discover the manner in which an expert studies an image. This paper presents a first step towards utilizing these data for computer vision purposes. A growing-neural-gas algorithm is used to learn a set of Gabor filters which give high responses to image regions which a human expert fixated on. These filters can then be used to identify regions in other images which are likely to be useful for a given vision task. The algorithm is evaluated by learning filters for locating specific areas of plant leaves.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4174 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ CRM2013 Serial 2438  
Permanent link to this record
 

 
Author Joan Marc Llargues Asensio; Juan Peralta; Raul Arrabales; Manuel Gonzalez Bedia; Paulo Cortez; Antonio Lopez edit  doi
openurl 
  Title Artificial Intelligence Approaches for the Generation and Assessment of Believable Human-Like Behaviour in Virtual Characters Type Journal Article
  Year 2014 Publication (down) Expert Systems With Applications Abbreviated Journal EXSY  
  Volume 41 Issue 16 Pages 7281–7290  
  Keywords Turing test; Human-like behaviour; Believability; Non-player characters; Cognitive architectures; Genetic algorithm; Artificial neural networks  
  Abstract Having artificial agents to autonomously produce human-like behaviour is one of the most ambitious original goals of Artificial Intelligence (AI) and remains an open problem nowadays. The imitation game originally proposed by Turing constitute a very effective method to prove the indistinguishability of an artificial agent. The behaviour of an agent is said to be indistinguishable from that of a human when observers (the so-called judges in the Turing test) cannot tell apart humans and non-human agents. Different environments, testing protocols, scopes and problem domains can be established to develop limited versions or variants of the original Turing test. In this paper we use a specific version of the Turing test, based on the international BotPrize competition, built in a First-Person Shooter video game, where both human players and non-player characters interact in complex virtual environments. Based on our past experience both in the BotPrize competition and other robotics and computer game AI applications we have developed three new more advanced controllers for believable agents: two based on a combination of the CERA–CRANIUM and SOAR cognitive architectures and other based on ADANN, a system for the automatic evolution and adaptation of artificial neural networks. These two new agents have been put to the test jointly with CCBot3, the winner of BotPrize 2010 competition (Arrabales et al., 2012), and have showed a significant improvement in the humanness ratio. Additionally, we have confronted all these bots to both First-person believability assessment (BotPrize original judging protocol) and Third-person believability assessment, demonstrating that the active involvement of the judge has a great impact in the recognition of human-like behaviour.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.055; 600.057; 600.076 Approved no  
  Call Number Admin @ si @ LPA2014 Serial 2500  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: