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The Richer Representation the Better Registration
Mohammad Rouhani, Student Member, IEEE, and Angel Domingo Sappa, Senior Member, IEEE

Abstract— In this paper, the registration problem is formulated
as a point to model distance minimization. Unlike most of the
existing works, which are based on minimizing a point-wise
correspondence term, this formulation avoids the correspondence
search that is time-consuming. In the first stage, the target
set is described through an implicit function by employing
a linear least squares fitting. This function can be either an
implicit polynomial or an implicit B-spline from a coarse to fine
representation. In the second stage, we show how the obtained
implicit representation is used as an interface to convert point-to-
point registration into point-to-implicit problem. Furthermore,
we show that this registration distance is smooth and can be
minimized through the Levengberg–Marquardt algorithm. All
the formulations presented for both stages are compact and easy
to implement. In addition, we show that our registration method
can be handled using any implicit representation though some are
coarse and others provide finer representations; hence, a tradeoff
between speed and accuracy can be set by employing the right
implicit function. Experimental results and comparisons in 2D
and 3D show the robustness and the speed of convergence of the
proposed approach.

Index Terms— Rigid registration, surface fitting, implicit
polynomials, implicit B-splines, registration error estimation,
residual error minimization, Levenberg-Marquadt algorithm.

I. INTRODUCTION

OBJECT representation and point set registration both are
common problems in computer vision. In general, they

are tackled as standalone problems and studied separately. The
current work places a bridge that connects both problems look-
ing for an efficient solution. Being inspired by the Computer
Graphics (CG) and Computer Aided Design (CAD) communi-
ties a compact object representation is adopted to reformulate
the registration problem in a unified representation-registration
framework.
The object representation field focuses on developing com-

pact models that allow to deal with large amount of data.
Nowadays, due to the improvement in 3D scanners, we are
surrounded by a high amount of raw data as 2D or 3D cloud
of points, and having a smooth and compact representation is
one of the important objectives that benefit computer vision
applications. In the current work we exploit implicit repre-
sentations, including Implicit Polynomial (IP) and Implicit
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B-Spline (IBS), to tackle the registration of two clouds of
points.
The registration problem, on the other hand, aims at finding

the best transformation that places both the given source set
and its corresponding target set into the same reference system
in order to minimize their distance. This transformation,
depending on the application, could be either rigid or non-
rigid. The rigid transformation only considers rotation and
translation parameters to move the source set [1]. The non-
rigid transformation, on the contrary, allows more degrees of
freedom for deforming the source set in order to minimize
the distance between the two sets [2], [3]. The current work
presents a novel rigid registration distance approximation that
can benefit both rigid and non-rigid registration. It is an
extension of a preliminary version [4] where only IPs are
used to describe the target set. In this work we show that
the proposed point to model distance minimization can be
also used with a more flexible implicit representation, Implicit
B-Spline (IBS) [5]. This flexible representation (IBS) can be
used to induce a fast and robust registration error.
The best rotation and translation could be roughly approx-

imated by the Principle Component Analysis (PCA). Indeed,
PCA just finds the major axes of each cloud of points and
then aligns these axes by translating the origin followed by
a rotation; hence, it just provides a coarse registration. The
registration methods, in general, can be divided into two main
categories, namely coarse and fine registration, where the latter
provides a more precise alignment. The coarse registration is
not very precise but it can be used as initialization for a fine
registration method. Gelfand et. al. in [6], for instance, present
a coarse registration using a branch-and-bound algorithm to
initialize a fine registration algorithm.
In general, fine registration approaches find the best rigid

transformation by iterating two steps. In the first step the
correspondences between the given source points and the
target points are sought in order to compute the registration
residual error. Then, in the second step, the best set of
parameters are found by minimizing this residual error. These
two steps are repeated until some convergence criteria is
reached. The Iterative Closest Point (ICP) algorithm is one
of the classical registration approaches following this two-
step scheme. It has been originally presented in [7] and [11]
and several improvements have been proposed in the literature
looking for more efficient and robust solutions (e.g., [8]–[10]).
Note that in most of these approaches the correspondence
search is performed at the point level and it makes the whole
process computationally expensive.
Some effort to link the registration with the representation

problem has been made by using high level representations in
order to avoid the correspondence search. Implicit polynomials
have been exploited in [11] to represent both the source set and
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Fig. 1. Using an interface for point sets registration: (a) Initial position of source (+) and target (o) sets; (b) Source set (+) and target set represented by
an IBS; (c) Registration result of source set (+) and the IBS; (d) The same result but represented by using the target set (o) and transformed source set (+).

target set. Probabilistic representations, like GMM, have been
used to describe both source set and target set (e.g. [12]– [14]).
In [15]– [17] the point-wise problem is avoided by using either
the distance field of the target set or the distance fields of both
target and source sets. More details about all these approaches
are given in the next section.
The current work proposes a novel and fast registration

approach that exploits a compact and smooth representation
as an interface to avoid the point-to-point correspondence
search. It consists of two main stages: in the first stage, an
implicit representation is provided to describe the target set.
An optimal implicit function is fitted using the least squares
form, hence it is quite fast. Although any implicit function
can be used in the current work we just show the usage of
implicit polynomials and implicit B-splines, which can be
indistinctly adopted in the proposed registration framework.
In the second stage, we use a fast distance estimation to
define the residual errors. This distance is induced by the
fitted implicit function from the first stage. The final registra-
tion distance is differentiable with respect to the registration
parameters and allows solving the problem through a gradient
based optimization algorithm. Due to the compactness of the
implicit representation the whole scheme can be used in a
coarse-to-fine framework. The rest of this paper is organized
as follows: Section II details related work. Section III presents
both the proposed representation and registration approaches.
Experimental results and comparisons with state of the art
are presented in Section IV. Finally, conclusions are given in
Section V.

II. MOTIVATION AND RELATED WORK

Let us consider two sets of points, referred to as source set
(data) S = {si }Ns

1 , and target set (model) T = {ti }Nt
1 (see

Fig. 1(a)). In the rigid case, the registration problem aims at
finding the best rotation and translation in order to take the
source set as close as possible to the target set. For this purpose
many point-to-point comparisons must be executed in order
to measure the closeness. For the non-structured case it will
take O(Ns Nt ) just for obtaining the distance measurement.
Although more elaborated solutions using data structure have
been introduced, our proposal is to replace the target set with
a proper interface that accelerates the distance measurement
(Fig. 1). Then the optimal configuration can be found through
measuring the point distances from this interface.

In order to work with an interface, instead of a point cloud,
a proper geometric model should be used. Triangle meshes
and parametric NURBS are among the common tools in these
domains, but they suffer from either the geometry limitation
or the parametrization problem. Implicit functions, on the con-
trary, provide a flexible representation without requiring any
parametrization over the point cloud. They describe objects
in 2D/3D through the level set where the function reaches
zero. Implicit Polynomial (IP) [18] is one of the simplest
choices for the function space F , since it is made out of
simple monomials. IPs can easily describe a given object
through a set of coefficients, but they are not flexible enough.
In other words, IPs suffer from the outliers created around the
point set, which are due to their non-compact supports. Radial
Basis Functions (RBFs) [19] provide another solution space
for implicit representations. They are smooth and flexible, but
small changes in the coefficient vector can lead to a global
change in the whole object.
In this work Implicit B-Splines (IBSs) beside implicit

polynomials are employed to represent the target set. IBS
proposes a smooth and flexible representation without any
need of parametrization [20]. Moreover, it is constructed out
of B-spline basis functions, which have compact supports.
Hence they have local control (i.e, changes in one coefficient
changes the local behavior of the object). Fig. 1(b) illustrates
the flexibility of IBSs to describe a complex 3D shape. In the
current work the optimal IBS/IP is easily obtained by means of
an extension of the 3L algorithm [18], which is a fast algebraic
fitting method formulated as linear least squares.
IP and IBS both provide an overall representation for the

target points. Since both are in a linear implicit form, they can
be easily computed. IP provides a fast and simple represen-
tation while IBS results in a more accurate description. Once
the target set has been described by a proper implicit function
the registration problem can be tackled in a point-to-model
scheme, which leads to a correspondence free registration
method. Moreover, a tradeoff between the speed and accuracy
can be met by employing a coarse or fine implicit represen-
tation. Point-to-model schemes have been already studied in
the literature by considering different representations for target
and source sets. These methods can be broadly classified as
probabilistic-based and distance-field-based approaches.
Probabilistic approaches represent each given set by a

probabilistic model like multivariate t-distributions [12] or
Gaussian Mixture Model (GMM) [13], [21]; hence, the
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registration problem becomes a problem of aligning two mix-
tures, which can be solved in the quasi-Newton optimization
framework. These approaches are highly dependent on the
number of mixtures used for modeling the point sets. Hence, a
user defined number of mixtures, or as many as the number of
points, is required. Moreover, although these methods do not
require any correspondence search, all points in the model are
implicitly considered as a potential correspondence (almost all
the points contribute to the GMM construction).
On the contrary to the previous approaches, distance field

has been used as an implicit representation, which provides
information over the whole domain. The method presented
in [15] overcomes the non-differentiable nature of ICP by
using a differentiable distance transform—Chamfer distance.
The error function derived from that distance field is a smooth
function, and its derivatives can be analytically computed;
hence it can be minimized through the Levenberg-Marquardt
algorithm (LMA) to find the optimal registration parameters.
The distance field used in [15] is a discrete field and its
derivatives used in LMA are not precise enough. In [16] a
local quadratic approximation of the distance function, based
on the curvature information, is presented. Unfortunately,
computing the principal curvatures over the point cloud is
computationally expensive and sensitive to noise. Finally, [17]
proposes a distance field approximation by using an implicit
polynomial [22]. This IP is considered to define a gradient flow
that drives the source towards the target without using point-
wise correspondences. Although fast, the proposed gradient
flow is not precise, especially close to the boundaries.
In the current work a novel approach is presented to

reformulate the point-to-point registration as a point-to-model
problem. In the first stage, an implicit function is constructed
to represent the target points. This representation is either an
implicit polynomial or implicit B-spline that can be rapidly
constructed. As a contribution a linear least squares fitting
algorithm is adopted to find the optimal IBS that describes
the target set more accurate than IP. Fig. 1(a) illustrates the
initial position of the source and target sets. The IBS zero set
representing the given target set is depicted in Fig. 1(b). In
the second stage this implicit function (either IP or IBS) is
used as an interface during the registration process. Fig. 1(c)
presents the registration results from the source set and the
IBS. Note that the optimal registration result is obtained as
shown in Fig. 1(d). In this figure source set and target set are
depicted again as point clouds.

III. PROPOSED METHOD

This section presents the main contributions of the current
work. First, the target set is described through an implicit
function like implicit polynomial (IP) or implicit B-spline
(IBS). We employ the 3L algorithm to find the optimal IP
and adapt it to find the optimal IBS. IP and IBS are both
in implicit forms so the target points are not required to be
parametrized. Moreover, both classes are linear with respect
to their coefficient vectors; so, we employ the same technique
to find an optimal IP or IBS. In the second part, the obtained
implicit representation is used for aligning two sets of points.

The distance used to measure the alignment error is a fast
distance estimation induced by the fitted implicit function.
The accumulated error is in the non-linear least squares
form, and hence can be optimized by the Levenberg-Marquadt
Algorithm. This minimization stage is iterated until conver-
gence is reached. It should be highlighted that the formulations
presented in the second stage are completely independent of
the choice for the representation in the first stage. So, it is up
to the user to chose either a simple and fast representation like
IP or a more flexible and precise one like IBS.

A. Object Representation

An object in 2D/3D can be easily described by a cloud of
points sampled from the object surface. This point cloud can
be enriched by knowing the point connections, for instance
through the corresponding triangle mesh. Unfortunately, this
representation has a geometry limitation and requires lots of
memory to deliver a fine enough representation. Moreover,
point level representation induces expensive point-wise com-
putations for our registration problem. In order to cope with
these limitations, the target point cloud is described through an
implicit function. An implicit function f describes the object
of interest implicitly through its zero set including those points
where f obtains zero; i.e., Z f = {x ∈ R

k : f (x) = 0}. Given
the target points T = {ti }Nt

1 an optimal implicit function can
be sought by minimizing the distance between the target points
and the zero set of this function. This implicit function f can
be easily chosen as an implicit polynomial defined as:

f (x) = f (x, y) =
∑

(i+ j )�d
{i, j }�0

ci, j x i y j = 0, (1)

where d is the polynomial degree. An IP is a simple descrip-
tion of the point set through a set of monomials and coeffi-
cients. The higher the IP degree is the more degree of freedom
are captured by the IP; but then, the outliers created by the
IP zero set cannot be easily avoided. In our experiments we
use an IP up to 7th degree that can roughly describe the point
cloud. In order to have a finer and precise representation, an
implicit B-Spline can be alternatively used, which is defined
as a combination of the tensor products of 1D basis functions:

f (x) = f (x, y) =
M∑

i=1

N∑
j=1

ci, j Bi(x)B j (y), (2)

where Bi (x) B j (y) are the spline basis functions, and the
matrix [ci, j ]M×N is the control lattice (coefficients) controlling
the shape of the IBS [5]. For the sake of simplicity we consider
M = N , then the basis functions Bi (x) and B j (y) have the
same behavior, though defined in different domains. Similarly,
the basis functions in 3D are tensor products of three 1D
basis functions. In general, IBSs provide smooth and flexible
representations in an implicit form. Constructed through a set
of basis functions with compact supports, IBS can be locally
controlled in contrast to implicit polynomials and radial basis
functions.
We exploit the simplicities and flexibilities of IPs and IBSs

to reformulate the registration problem. In the first stage of our
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registration method the target set is replaced by an IP or IBS
by employing the same fitting algorithm. It should be noticed
that IP and IBS, despite their different formulations, have a
similar form and both of them can be linearly described based
on the their coefficients:

f (x) = cT m(x) = m(x)T c, (3)

where c is the coefficient vector containing the IP or IBS
coefficients and m(x) is the basis vector containing the IP
or IBS basis functions. The basis vector for IP comprises the
monomials in the form of xi y j :

m(x) = [1, x, y, x2, xy, y2, x3, x2y, ..., yd]T . (4)

For the case of implicit B-Spline the basis vector contains the
basis functions in the term of tensor products Bi (x)B j (y):

m(x) = [B1(x)B1(y), ..., B1(x)BN (y), ..., BN (x)BN (y)]T .
(5)

Note that the coefficient vector must respect the same order
as the basis vector. Then, the inner product of the coefficient
vector and the basis vector (either IP or IBS) defines the
implicit function (IP/IBS) as already defined in (1) and (2).
Surface reconstruction techniques concern finding the opti-

mal coefficient vectors to describe the given point cloud. In
the current work, we employ the 3L algorithm [18] to find
the optimal coefficients in order to describe the target point
cloud T = {ti }Nt

1 . Moreover, we adapt the original algorithm
to find the optimal IBS coefficients still in a linear least
squares framework. The decision whether to use IP or IBS
to represent the given target set depends on its geometrical
complexity. In other words, the user should select which one
is the best option for the given target set: if a simple overall
description is enough, then IP can be used; otherwise, IBS is
preferred in order to capture more details of target point cloud.
In this section we show that a common fitting framework
and formulation can be used to find the optimal IP or IBS
description and this is why we present both formulations at the
same time. Later in section III-B we show that our proposed
formulation for point to model registration is independent of
the implicit representation of the target points, so both IP and
IBS can be used. Of course employing a low resolution IP
during the registration leads us to a coarse solution, while a
high resolution IBS (afterwards) can deliver a better estimation
of the registration parameters.
The 3L algorithm considers the given target points T0 = T

as well as its inner and outer offsets {T+δ,T−δ}. The optimal
function f (either IP or IBS) is found such that it obtains zero
in the original set as well as ±ε in the additional offsets. Then,
the objective function F(c) = ‖M3Lc − b‖2 is considered to
be minimized, where:

M3L =
⎡
⎣ MT−δ

MT0
MT+δ

⎤
⎦ , b =

⎡
⎣−ε

0
+ε

⎤
⎦ . (6)

The monomial matrices MT0 and MT±δ are constructed from
the basis vectors computed in the original set T0 and its offsets
T±δ respectively. In fact each row in these matrices is made
out of the basis functions presented in (4) or (5) depending
on whether IP or IBS is selected for the description.

Fig. 2. Cubic B-Spline basis functions: (le f t) 2D basis functions made out
of blending functions; (right) a tensor product 3D basis functions defined on
the unit square.

The 3L algorithm is originally proposed for Implicit Poly-
nomials [18]. In order to adapt the 3L formulation for IBS
solution space, the monomial matrix M3L must be constructed
for the IBS case. Referring to (6), this matrix contains the basis
vectors computed in the original source set, the inner and outer
offsets. The basis vector at a given point constructing a row
of M3L is computed through the definition in (5). The way
in which the value of basis functions is computed is based on
the blending functions that are defined on [0, 1]. Without loss
of generality, through this paper a cubic B-Spline formulation
is used, which is made out of the following patches:

b0(u) = (1 − u)3/6, b1(u) = (3u3 − 6u2 + 4)/6,
b2(u) = (−3u3 + 3u2 + 3u + 1)/6, b3(u) = u3/6.

(7)

These cubic patches blend together leading to C2 continuous
basis functions. Fig. 2 shows how a B-Spline is defined
out of these blending functions. In order to have N basis
functions in the interval [0, 1] the step of the knot1 sequence
is uniformly chosen with the step of � = 1/(N − 3)
(see Fig. 2(le f t)). This sequence is chosen in order to cover
the whole unit interval, then the tensor product in 2D (3D)
covers the whole unit square (cube). It should be emphasized
that the implicit B-spline, unlike the parametric B-splines or
NURBS, does not impose any parametrization over the given
point set. So the knot sequence in this context is not related
to any parametrization over the point set. It is simply related
to the space where the given points are coming from. In our
implementation we normalize all the data to put them in a unit
square (cube).
Considering the cubic B-spline with a uniform knot

sequence the definition in (2) can be directly reformulated
based on the blending functions:

f (x) = f (x, y) =
3∑

r=0

3∑
s=0

ci+r, j+s br (u).bs(v) (8)

where the indices start from:

i = �x/�� + 1, j = �y/�� + 1 (9)

and the given coordinates in XY will be mapped in U V as:

u = x/�− �x/��, (10)

v = y/�− �y/��.
This definition provides us with the computational efficiency
useful for calculating the monomial matrix and the regulariza-
tion term that is presented later in this section. The basis vector
for a given point in M3L should be computed through the

1knot: position where two blending functions join.
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Fig. 3. Illustrations of the fitted IBS with different regularization (μ in (13));
resulting zero sets are highlighting.

definition in (8). Note that the value br (u)bs(v) corresponds
to the term Bi+r (x)B j+s(y) in the basis vector m(x) and it
will be used to fill in the proper entry according to (5). Once
the M3L is constructed (either for IP or IBS), the optimal
implicit coefficients can be directly computed as the least
squares solution:

c = M†
3Lb = (MT

3LM3L)
−1MT

3Lb. (11)

The matrix MT
3LM3L in (11) is very close to be singular and

especially for the case that IBS is a highly sparse matrix. This
problem can be addressed by some regularization techniques
like Ridge Regression (RR). In the current work a geometric
meaningful tension term is considered instead to regularize the
control parameters [20]. This term is computed by measuring
the curvature of the hyper-surface f over the whole domain:

T (c) =
∫∫

XY
f 2x x + 2 f 2xy + f 2yydxdy. (12)

Considering the vector form of IBS in (3) this tension term
can be written as cT Hc, which is a quadratic function of the
control value. Thus the minimization problem is updated as:

F(c) = ‖M3Lc − b‖2 + μcT Hc, (13)

where μ controls the regularization smoothness. Fig. 3, for
instance, shows how the regularization value controls the
smoothness of the shape. The optimal solution of (13) can
be obtained by solving a linear system of equations [20]:

c = (MT
3LM3L + μH)−1MT

3Lb, (14)

It should be noticed that the matrix H can be directly con-
structed based on the blending functions defining the spline
basis functions.
The formulation presented in (14) is common for both IP

and IBS; the only difference is the way the monomial matrix
M3L is constructed. For the case of IP it is simply filled
in with rows of monomials while in the case of IBS it is
made out of the right product of b-spline patches. Moreover,
typical IP fitting methods use a simple regularization matrix
like the identity matrix H = I (ridge regression) that has no
geometric interpretation, while in our case we use a tension
term that controls the rigidity of the implicit function. Finally,
we should highlight that no parametrization is imposed on the
target points and the order of points injected in the monomial
matrix does not affect the optimal value for the coefficient
vector.

B. Objects Alignment

The implicit representation computed in (14) provides a
smooth description of the target points through its zero set. As
mentioned in the previous section it can be either an IP or an
IBS with different degrees or different regularization effects.
A low degree IP, for instance, delivers an overall description
for the target points while a higher degree IP captures more
details in the target; however, the degree can be automatically
set [22]. Once the target point set is replaced with a proper
implicit function, the point-to-point registration is converted
into a point-to-model registration, which can be considered
in different resolutions. Moreover, the implicit representation
provides information over the whole space that can be useful.
In fact, the values of implicit function around the object bound-
ary provide good approximations of the distance function. In
this subsection we describe how the implicit representation is
exploited to measure and minimize the registration error.

1) Distance Formulation: in the rigid case, the registration
approaches search for the optimal set of parameter �, which
contains rotation angles and translation. In 2D case the rigid
transformation contains three parameters � = [θ, tx, ty]T and
in 3D case it contains six parameters� = [θ, φ,ψ, tx, ty, tz]T;
the first three for rotation and the last three for translation.
The optimal parameter vector �̂ moves the source points
S = {si }Ns

1 as close as possible to the interface fc(x) that
describes the target points T :

�̂ = argmin�

⎛
⎝ Nd∑

i=1

Dist2(Rsi + t, fc)

⎞
⎠ , (15)

where Dist is a function that measures the distance between
the source points and the implicit function. In this distance
estimation all the source points are considered. In order to
lessen the effect of outliers we should discard some of the
source points [23]. For instance, it can be 10% of the points
with the largest distances. In a more elaborated fashion, we
can simply reach the set of inlier indices I by discard-
ing those source points with a distance beyond 2σd , i.e.,
I := {i |Dist (Rsi + t, fc) < 2σd }, where σd is the standard
deviation of the distances [24].
In the current work this distance is approximated using

the estimation proposed in [25] that is an estimation of the
orthogonal distance based on the first order Taylor expansion
of the distance function; hence, it can be easily computed by
normalizing the algebraic distance by the gradient norm:

Dist (s, fc) ≈ | fc(s)|
||∇ fc(s)|| . (16)

This estimation is interesting since it is: i) independent of
the zero set representation; and i i) invariant to rigid body
transformation. Using this approximation in (15), the regis-
tration parameters can be found by minimizing the following
function:

Dist� =
∑
i∈I

(
fc(Rsi + t)

‖ ∇ fc(Rsi + t) ‖
)2

(17)

=
∑
i∈I
(wi fc(Rsi + t))2 =

∑
i∈I

d2
i ,
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Fig. 4. The level curves of the IBS is used to approximate the distance. In
addition, the distance sensitivity with respect to small changes in rotation and
translation can be approximated as well.

Fig. 5. Convergence region of the proposed approach with respect to
[θ, tx, ty] for the 2D object and IBS in Fig. 11(top).

where:

di = wi fc(Rsi + t), (18)

wi = 1/‖ ∇ fc(Rsi + t) ‖,
represent the distance of transformed source point and the
proper weight to approximate it. Thus, the point-to-point
registration is tackled in a higher level using a curve or surface
as an interface. This interface provides a rich structure for the
registration process, together with advantages like robustness
to noise and missing data. Fig. 4 illustrates how this interface
facilitates the registration error estimation without any need to
correspondence search.

2) Distance Optimization: the proposed registration dis-
tance is smooth and differentiable with respect to the
registration parameters (see Fig. 5). Moreover, the gradient
information of this distance can be analytically calculated.
Hence it can be used in any gradient based optimization
algorithm like gradient descent and Levenberg−Marquardt
algorithm (LMA). Intuitively, the gradient information of this
distance function shows its sensitivity with respect to rigid
parameters.
In this work we use LMA for the optimization part [26],

which is particularly proposed for non-linear least squares
forms as the case in (17). This method proposes a tradeoff
between the gradient descent and the Gauss−Newton algo-
rithm. In order to handle LMA, the value of each residual
in (17) and its partial derivatives, which are expressed in a
Jacobian matrix J , must be provided. Since LMA uses the

gradient information and the first order distance approximation
in (17) captures this information, higher degree approxima-
tions would not benefit the result of LMA. It should be
mentioned that the derivatives of summands in (17) must be
calculated with respect to the parameters in �. Hence, the
Jacobian matrix consisting of three columns in 2D case and six
columns in 3D case can be easily computed. Since the implicit
function fc is a smooth function, wi could be considered as
a constant weight, hence its derivative vanishes. As a general
formula each entry of the Jacobian matrix can be computed
as an inner product:

J(i, j) = wi

(
∂

∂� j
(Rsi + t)

)
.∇ f (Rsi + t), (19)

where � j is the j th parameter of �. This matrix contains
3 or 6 columns for the case of 2D or 3D respectively. Those
rows of J corresponding to outliers (i �∈ I) should be removed.
The derivatives of the transformed source points in (19) can
be analytically computed. For instance for 2D case we have:

∂

∂�1
(Rsi + t) =

(− sin(θ) − cos(θ)
cos(θ) − sin(θ)

)
si (20)

∂

∂�2
(Rsi + t) = e1

∂

∂�3
(Rsi + t) = e2 (21)

where e1 and e2 are the unit basis vectors.
Having estimated the proposed distance (17) and its Jaco-

bian matrix through (19) it is easy to perform LMA in order
to refine the rigid parameter vector �:

�k+1 = �k + β	�,
(JTJ + λdiag(JTJ))	� = JTD, (22)

where β is the refinement step; diag(JTJ) is the diagonal
matrix containing the diagonal entries of (JTJ); 	� represents
the refinement vector for the rigid parameters; λ is the damping
parameter in LMA; and the vector D is a column vector
containing the values Dist (Rsi + t, fc) in the current rotation
R and translation t. In our implementation they are initialized
as θ = 0, tx = 0 and ty = 0; more evolved initializations,
such as PCA alignment, could be alternatively used. Parameter
refinement (22) in LMA must be repeated till convergence is
reached.
Fig. 5 shows an illustration of the convergence region

of the proposed registration framework. This region corre-
sponds to the 2D bunny shape case study and its fitting IBS
shown in Fig. 11(top). The axes on this plot correspond to
[θ, tx, ty] parameters. This figure depicts that the proposed
registration method converges to the optimal parameter (the
point shown in the center) independently of the initialization
in the region (relative position of source and target sets). Dif-
ferent layers in this 3D plot correspond to level surfaces with
similar distance values. Our experimental results show that the
regularization parameter used during fitting has impact on the
convergence region. Indeed a larger regularization parameter
leads to a coarser and smoother implicit representation, and a
wider convergence region as a consequence.
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IV. EXPERIMENTAL RESULTS AND COMPARISONS

The experimental results are presented for the proposed
registration scheme using different implicit representations.
In the first section, simple IPs are considered to represent
the target sets. Despite the simplicity of the representation
the obtained registration results are quite promising. In the
following section this representation is promoted to IBSs that
provide more flexible representations to tackle the registration
of objects with intricate and challenging geometries like the
ones presented in Fig. 1 and Fig. 12. Note that a single
IP, independently of its degree, cannot properly capture the
geometry of a complex object, such as the one presented in
Fig. 1, which as a consequence will affect the registration
result.
The proposed approach has been evaluated using different

2D and 3D source sets and target sets from public repositories
[27] and [28]. In all the examples, just to visually appreciate
the result, the same set of points is used as source and target
sets. Notice that the proposed approach does not consider the
points in the target set during the registration, despite that
after the registration the source points appear on the target
points.
In addition to the qualitative evaluation presented with

2D contours 3D real objects have been registered with the
proposed approach and compared with four techniques (i.e.,
[13], [15]– [17]) from the state of the art, together with the
classical ICP [7]. Each technique iterates until one of these
stopping criteria is reaches: if the number of iterations exceeds
a maximum bound (#Iter = 40) or the relative registration
error is smaller than the given threshold (ε < 0.005); relative
registration error is defined as: ε = |Et − Et−1|/Et , where Et

refers to the registration error between the target and source
set at iteration t .
On the contrary to the relative registration error, which is

an internal measure, an Accumulated Residual Error (ARE) is
used during the comparisons. It is computed by measuring
the accumulated error, in a point-wise manner, from the
transformed source set to a reference set. This reference set
corresponds to a highly detailed description of the target
set. It contains the target set and on average is defined by a
set of points ten times larger than the target set. Each residual
error is computed by finding the nearest point in between the
registered source set and the reference set.

A. Registration Using IPs

In this section, point-to-point registration problem is con-
verted to point-to-IP registration that can be solved faster;
ideally, it is intended for 2D contours or 3D objects with
simple geometries. Fig. 6 shows initial configurations for four
different source and target sets. The first row corresponds to
closed contours with a full overlap. Source sets have been
obtained by rotating and translating the corresponding target
set, and by adding Gaussian noise to study the robustness
of all the techniques. Accuracy and number of iterations are
provided in Table I and Table II respectively. It should be
highlighted that the proposed approach converges in all the
cases and most of the time with the smallest error and lowest

Fig. 6. Initial positions of data sets and target sets for noisy ((a) and (b)) and
partial overlap ((c) and (d)) examples registered with the different approaches.

number of iterations, in spite of the noise in the source set.
In these examples IPs of degree six have been used for
fitting the target sets. The IP degree could be automatically
determined through the algorithm in [22], which is based
on the QR decomposition of the monomial matrix. Fig. 6
(bottom) presents two examples where the source set partially
overlaps the corresponding target set; source and target sets
correspond to uniform sampling of different boundaries. Target
points have been fitted by sixth degree IPs in both cases. Both
of them have been registered using the proposed technique
and the five aforementioned ones; the obtained registration
accuracy is given in the third and fourth rows of Table I, as
well as the number of iterations when one of the stopping
criteria is reached.
Fig. 7 presents challenging situations where target sets and

source sets contain different densities of points. Fig. 7(le f t)
shows the initial configurations while Fig. 7(right) depicts the
results obtained by using the proposed approach. Quantitative
results from these two examples are presented in Table I
and Table II. The challenge in these examples lie on the
non-existence of any point to point correspondence, although
both clouds of points correspond to the same contor. The
proposed approach, since the target set is represented by a
unified IP, is robust in this kind of situations.
In addition to 2D cases presented above, 3D real objects

from public data sets [27] and [28] have been registered with
the proposed approach and compared with state of the art
techniques. The first column in Fig. 8 shows initial position of
source and target sets both represented by means of triangular
meshes to highlight the details. The second column depicts IPs
describing the target points together with the points of their
corresponding source sets and the third one is the final regis-



ROUHANI AND SAPPA: RICHER REPRESENTATION THE BETTER REGISTRATION 5043

TABLE I

COMPARISONS OF REGISTRATION ERROR (ARE) RESULTS FOR 2D CASES (ICP: ITERATIVE CLOSEST POINT [7];

GMM: GAUSSIAN MIXTURE MODELS [13]; DT: DISTANCE TRANSFORM [15]; GF: GRADIENT FLOW [17];

DA: DISTANCE APPROXIMATION [16]; PA: PROPOSED APPROACH)

TABLE II

NUMBER OF ITERATIONS OF DIFFERENT REGISTRATION

METHODS FOR 2D CASES

Fig. 7. Source and target sets containing different density of points.
((a) and (b)) Initial configurations. ((c) and (d)) Final results from the
proposed approach.

tration result. The illustration presented in Fig. 8(a)(1strow)
corresponds to a source set defined by 811 points. The target
contains 926 points and is represented by means of a seventh
degree IP. The result obtained with the proposed approach is
shown in Fig. 8(c)(1strow). Quantitative information about
the data sets, as well as comparisons with other approaches
are provided in Table III; the stopping criteria considered in
Table I are also used here. A seventh degree IP is used in the
second row to represent the 745 points of the target set, while

Fig. 8. Public data sets (from [27] and [28]) registered with the proposed
approach and state of the art techniques. (a) Initial set up of the given source
and target sets represented by means of triangular meshes to highlight details.
(b) IPs representing target sets and source points. (c) Results of the proposed
registration approach represented through triangular meshes to make visual
evaluation easier.

the source set contains 609 points. Note that after describing
the target set with its fitting IP the target points are no longer
considered. A fifth degree and a sixth degree IPs are used
in the third and fourth rows, respectively. Fig. 8(c) presents
the registration obtained with the proposed approach. Statistics
about their registration process and comparisons with state of
the art techniques are presented in Table III and Table IV.
Finally, two cases where the source and target are partially

overlapped are presented in Fig. 9. The (top) row shows a
simple example where the source and target sets are picked
from the same ellipsoid, which is described by a second degree
IP in the presented approach. These two sets are partially
overlapped (about 40%) as shown in the last column. Despite
the simplicity of the problem, none of the techniques presented
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TABLE III

COMPARISONS OF REGISTRATION ERROR (ARE) RESULTS FOR 3D CASES (ICP: ITERATIVE CLOSEST POINT [7];

GMM: GAUSSIAN MIXTURE MODELS [13]; DT: DISTANCE TRANSFORM [15]; GF: GRADIENT FLOW [17];

DA: DISTANCE APPROXIMATION [16]; PA: PROPOSED APPROACH)

TABLE IV

NUMBER OF ITERATIONS OF DIFFERENT REGISTRATION

METHODS FOR 2D CASES

Fig. 9. Partial overlap cases. (a) Initial set up of source sets and target
sets to be registered. (b) IPs representing target sets and the source points.
(c) Results from the proposed approach.

in Table III, except our approach, converge to the right
configuration. All these registration techniques are trapped in a
local minimum, while our approach exploits the extrapolation
provided by the fitted surface. The (bottom) row presents
another illustration of partial overlap where the points are
picked from the back of Bunny. In this case, although all the
techniques have similar behavior, the proposed approach has
the smallest ARE.
The evolution of ARE for registering Fig. 8(bottom) is

illustrated in Fig. 10. It can be appreciated that the proposed
approach has the smallest ARE and the fastest convergence.
Although GF [17] reaches the same optimal ARE its con-
vergence is slower; the oscillation in DT [15] is due to the
discrete approximation of the distance field, which is not
the case of the proposed approach that has a smooth behavior.
The evolution of GMM is not depicted since it is out of the
range of the plot.

Fig. 10. Evolution of ARE of different registration algorithms along 30
iterations for registering Fig. 8(bottom).

B. Registration Using IBSs

In this section, point-to-point registration problem is con-
verted to point-to-IBS registration where an optimal IBS
represents the original target points. In order to make clearer
the difference with the previous section, results are differently
presented with other colors in order to highlight the fact
that the target set of points is represented through an IBS
that provides a more flexible representation able to tackle
more challenging geometries. It is a valid alternative when
IPs cannot be used (sometimes the large amount of outliers
generated by IP introduce mistakes during the registration).
Fig. 11 shows illustrations of the proposed approach using
2D cases. In the example presented in the first row each set
contains 115 points. The contours in the other four rows are
defined by 167, 174, 148 and 164 points respectively. It should
be highlighted that sometimes a coarse IBS representation
leads to a promising result. This can be appreciated in the
examples presented in the first and third rows. In these cases,
even though the IBSs do not fit the target sets accurately, the
optimal registration parameters are obtained.
IBSs have been used for describing different model sets

in 3D in Fig. 13. These data sets have been already used
in Fig. 8 when IPs are employed for model set fitting.
Fig. 12(le f t) presents the initial position of source and
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Fig. 11. (a) Initial positions of source (+) and target (o) sets. (b) Source (+)
sets and IBSs representing the targets. (c) Final results of registered source
(+) sets and IBSs. (d) The same result but represented by using the target
(o) sets and transformed source (+) sets with the proposed approach.

Fig. 12. Registration results using IBS for model fitting. These data has been
already used in Fig. 8 for different IPs. IBSs provide more precise description
compared to IPs.

target sets. Fig. 12(middle) shows the IBSs representing the
different target sets together with the source sets. Finally,
Fig. 12(right) presents the registration results obtained with
the proposed approach; IBS surfaces used to represent target
sets are just kept for visualization purpose. From the middle
column in the current figure it is clear that IBSs provide
more precise representation that does not suffer from the
outliers. This fact benefits the registration stage when the IBS
is employed for minimizing the distance between the data
set and the implicit function. Table V shows the quantitative
comparison between the registration results for this data set

Fig. 13. 3D cases corresponding to real data sets registered with the proposed
approach and state of the art techniques: (le f t) Initial positions of source (+)
sets and target (o) sets. (middle) Source (+) and target sets represented by
IBSs; (right) Final results of registered source (+) and target (o) sets with
the proposed approach.

TABLE V

COMPARISONS OF REGISTRATION ERROR (ARE) RESULTS FOR IPs

(IN FIG. 8) AND IBSs (IN FIG. 12 AND FIG. 15)

when different IPs and IBSs are used as interfaces. Referring
to these results IBSs leads to better registration results. This
fact is later studied in Fig. 15 for Bunny data set when
different degrees of IPs and different regularizations for IBSs
are employed before registration stage.
Fig. 13 presents experimental results obtained with the

proposed approach when 3D data sets are considered. All
the information regarding the number of points in source and
target sets is provided in Table VI. These sets are obtained
from the same surface but not necessarily containing the same
points. Like in the 2D cases, some of the points in source and
target sets are the same, which allow us to visually evaluate
the accuracy of proposed approach. Note that in the cases
of the “Hand” in Fig. 13(bottom) a coarse to fine approach
has been used in order to reach the global minima. As
shown in Fig. 13(bottom − middle) a highly regularized IBS
(consequently a coarse representation) is used at first. After
five iterations, this interface has been replaced by a mildly
regularized IBS (consequently more accurate representation).
This IBS together with the final registration result is illustrated
in Fig. 13(bottom − right). Using IBS as an interface in our
registration approach facilitates a coarse to fine registration
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TABLE VI

COMPARISONS OF IBS REGISTRATION ERROR (ARE) RESULTS FOR 3D CASES (ICP: ITERATIVE CLOSEST POINT [7]; GMM: GAUSSIAN MIXTURE

MODELS [13]; DT: DISTANCE TRANSFORM [15]; GF: GRADIENT FLOW [17]; DA: DISTANCE APPROXIMATION [16]; PA: PROPOSED APPROACH)

TABLE VII

NUMBER OF ITERATIONS OF DIFFERENT REGISTRATION

METHODS FOR 3D CASES

Fig. 14. The effect of outliers and noises: (a) Initial positions of source
(+) and target (o) sets. (b) Source (+) sets and IBSs representing the targets.
(c) Final results of registered source (+) sets and IBSs. (d) The same result
but represented by using the target (o) sets and transformed source (+) sets
with the proposed approach.

scheme. It should be mentioned that all we need to adjust the
accuracy of IBS is the regularization parameter. For instance,
in the case of Hand, the regularization parameter in eq. (14) is
set to μ = 103 when a coarse IBS is required and μ = 1 when
a fine IBS is replaced. Table VI and Table VII presents the
registration error and the number of iterations, respectively,
for all the algorithms tested during the comparisons. In all
the cases the proposed approach finds the optimal parameters
quite precisely, and in fewer iterations.
Our presented registration scheme easily mitigates the effect

of noises and outliers. Thanks to our two-stage algorithm noise
and outliers in the target and source are tackled separately in
the first and second stage. Indeed, the fitting algorithm in the
first stage finds the best implicit model that represents the
target points. The 3L algorithm presented in section III-A is
quite robust to the noise especially in the case of IBS when
a high regularization parameter is used. Fig. 14 illustrates the
2D Bunny example presented in Fig. 11 disrupted by noise
and outliers. In the first row the target and source points are
deviated from their original position by ±3% and ±6% noise,
respectively. Moreover, the source contains more than 20
outliers randomly injected in the unit square where the source
lies in. The second column shows how the fitted implicit
B-spline conquer the outliers effect on the target.

TABLE VIII

COMPARISON BETWEEN THE REGISTRATION RESULTS USING DIFFERENT

IPS AND IBSS (THE BOLD NUMBERS ARE THOSE PARAMETERS OF

IP/IBS THAT WE CHANGE FOR GOING FROM COARSE TO FINE)

Additionally, the outliers in the source are removed based
on their distance comparison with the standard deviation σd .
In the second row, the amount of noise in the target and
source are increased to ±5% and ±8% respectively. In this
example the target set contains around 20 outliers that are
easily tackled during fitting just by employing a higher
regularization. Plus, the source includes more than 40 outliers
that are tackled by using a lower threshold to remove more
outliers.
As already mentioned, the main goal of the first stage

of our registration scheme is to come up with an interface
describing the target set. This interface is in the form of an
implicit function and could be either an IP or an IBS or even
a RBF. As long as the function is implicit and linear with
respect to its coefficient vector the 3L fitting algorithm can
be applied. Fig. 15 illustrates the final results obtained by
different implicit functions. The first row shows implicit poly-
nomials of different degrees from coarse to fine and the second
row includes implicit B-splines with different regularizations.
Table VIII contains the information about the implicit function
used for fitting, the number of iterations as well as the final
registration error (with respect to a high resolution reference
set). IPs and IBSs from different resolutions have been used as
interface. In order to go from coarse to fine, we either change
the degree (for the case of IP) or the regularization parameter
(for IBS). Both qualitative and quantitative results show that
a high resolution IBS leads to a more precise registration.
However, starting from a low resolution implicit function and
then switching to a high resolution one will help to reduce
the registration error. For instance, for the case of IBS we
start with a high regularization λ = 104 and we decrease it
to λ = 103 and λ = 10. The decrease can happen after some
iterations or when the changes in registration error (the relative
error ε = |Et − Et−1|/Et ) is too small.
In addition to the precision, IBS provides a fast distance

computation in comparison with IP. In other words IPs are
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Fig. 15. Comparison between the registration results of Bunny in Fig. 8 using different IPs and IBSs. The first row correspond to IPs and the second one
shows different IBSs. The description is from coarse to fine when we move from left to right.

Fig. 16. Evolution of the error measurement in the parameter space for different algorithms applied for the 2D data set in Fig. 14(top); the errors are
computed for the rotation θ and translations tx and ty respectively.

Fig. 17. Matching two different samplings of a 3D face: (a) Initial position of source and target sets; (b) Source set and target set represented by an IBS;
(c) Registration result of source set and the IBS; (d) The same result but represented by triangle meshes.

much more expensive when it comes to computing the distance
through our method. Computing f and ∇ f for a 3D IBS
takes at most 64 products to compute the inner product
between the coefficients and the basis (regardless of the lattice
size), while it takes 286 products when a 10th degree IP is
used. Hence, IBSs are not just flexible representations but
they are also cheaper for our distance estimation plus the
minimization. This is the main advantage of our method when
it comes to comparison with some similar work like [17]. In a

non-optimized Matlab implementation, our proposed method
takes around 2.1 seconds after 10 iterations to register 3D
bunny data set (724 source points vs. 817 target points)
with an IBS of size 20 × 20 × 20 describing the target set.
In contrast, a similar method like [17], which exploits IPs
as interfaces, takes around 17.3 seconds after 20 iterations
when just a 10th degree IP has been used to approximate
the gradient field. The standard ICP method [7] takes around
13.1 seconds after 12 iterations, when a complete point to
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point comparison is considered for correspondence search.
The quadratic distance in [16] demands 5.5 seconds for 20
iterations with a downsampling of 10, but it requires expensive
computations to estimate the principal curvatures. The method
in [15] is quite fast during registration (less than 1 second
for 20 iterations) but it highly depends on the distance field
resolution that requires a lot of computations before starting
the registration.
In all the qualitative comparisons in this manuscript we just

presented the number of iterations as well as the registration
errors in terms of euclidean distance between the target set
and the transformed data set. However, the results could be
compared in terms of the transformation parameters. Unfortu-
nately, the distance in the parameter space does not lead to a
fair comparison that is geometrically meaningful. For instance,
a translated set that is two units away from the original one has
the same L1 distance as the one for a transformed set with one
unit translation and rotation, while geometrically can be much
further. Fig. 16 illustrates the evolution of the rigid parameters
for the 2D registration problem in Fig. 14(top). The top plot in
Fig. 16 illustrates the evolution of the rotation parameter while
the rest two concern the translation along x and y directions.
In this typical example ICP shows a slow convergence while
our proposed method converges in first few iterations. As the
last column depicts, ICP seems to diverges during the first five
iterations, while it is converging in the geometric space. The
method of discrete distance transform seems to be oscillating
since it depends on the distance field resolution and it gets
stuck and oscillates when it get beyond this resolution.
Fig. 17 shows two different samplings of a 3D face. Both

source set and target set are sampled from a 3D scanned face.
The original point cloud contains more than 112k points, while
the sampled sets contain 2242 points. We employ an IBS with
a lattice of size 203 and a moderate regularization λ = 200.
Fig. 17(b) shows how the target set is replaced with the IBS.
Then, registration is performed between the source points and
the IBS model. Note that no correspondence search is applied;
hence, instead of O(N2

s ) comparisons only O(Ns ) computa-
tions for the source set with Ns = 1242 points are applied.
In Fig. 17(c) the final alignment between the source and IBS
after 12 iterations is shown. Of course, the aligned source set
is not a perfect alignment of IBS, but the final figure illustrates
how it perfectly matches the target set (see Fig. 17(d)).

V. CONCLUSION

In this paper two flexible implicit representations are
exploited to tackle the registration problem. In the first stage
IPs and IBSs are used to describe a cloud of points. The
optimal implicit representation is obtained through a linear
least squares formulation; furthermore, in the IBS case, its
smoothness can be easily controlled by the regularization
parameter. In the second stage we exploit the simplicity and
flexibility of IPs and IBSs to propose a registration distance.
Hence, the point-to-point registration problem is converted
into a point-to-model one. Then, the registration problem
can be tackled in different stages starting from a coarse to
fine representation for the target set. Moreover, the resulting

distance from the implicit function and its gradient informa-
tion can be easily computed and it fits the requirement of
any gradient based optimization algorithm to find the best
registration parameters. Experimental results and comparisons
are provided showing both fast convergence and robustness
in challenging situations. Moreover, it is shown how a coarse
to fine representation can lead the convergence to the global
optimum.
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