|
Records |
Links |
|
Author |
Muhammad Anwer Rao; Fahad Shahbaz Khan; Joost Van de Weijer; Matthieu Molinier; Jorma Laaksonen |


|
|
Title |
Binary patterns encoded convolutional neural networks for texture recognition and remote sensing scene classification |
Type |
Journal Article |
|
Year |
2018 |
Publication |
ISPRS Journal of Photogrammetry and Remote Sensing |
Abbreviated Journal |
ISPRS J |
|
|
Volume |
138 |
Issue |
|
Pages |
74-85 |
|
|
Keywords |
Remote sensing; Deep learning; Scene classification; Local Binary Patterns; Texture analysis |
|
|
Abstract |
Designing discriminative powerful texture features robust to realistic imaging conditions is a challenging computer vision problem with many applications, including material recognition and analysis of satellite or aerial imagery. In the past, most texture description approaches were based on dense orderless statistical distribution of local features. However, most recent approaches to texture recognition and remote sensing scene classification are based on Convolutional Neural Networks (CNNs). The de facto practice when learning these CNN models is to use RGB patches as input with training performed on large amounts of labeled data (ImageNet). In this paper, we show that Local Binary Patterns (LBP) encoded CNN models, codenamed TEX-Nets, trained using mapped coded images with explicit LBP based texture information provide complementary information to the standard RGB deep models. Additionally, two deep architectures, namely early and late fusion, are investigated to combine the texture and color information. To the best of our knowledge, we are the first to investigate Binary Patterns encoded CNNs and different deep network fusion architectures for texture recognition and remote sensing scene classification. We perform comprehensive experiments on four texture recognition datasets and four remote sensing scene classification benchmarks: UC-Merced with 21 scene categories, WHU-RS19 with 19 scene classes, RSSCN7 with 7 categories and the recently introduced large scale aerial image dataset (AID) with 30 aerial scene types. We demonstrate that TEX-Nets provide complementary information to standard RGB deep model of the same network architecture. Our late fusion TEX-Net architecture always improves the overall performance compared to the standard RGB network on both recognition problems. Furthermore, our final combination leads to consistent improvement over the state-of-the-art for remote sensing scene |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes  |
LAMP; 600.109; 600.106; 600.120;CIC;ADAS |
Approved |
no |
|
|
Call Number |
Admin @ si @ RKW2018 |
Serial |
3158 |
|
Permanent link to this record |
|
|
|
|
Author |
Fahad Shahbaz Khan; Muhammad Anwer Rao; Joost Van de Weijer; Michael Felsberg; J.Laaksonen |

|
|
Title |
Compact color texture description for texture classification |
Type |
Journal Article |
|
Year |
2015 |
Publication |
Pattern Recognition Letters |
Abbreviated Journal |
PRL |
|
|
Volume |
51 |
Issue |
|
Pages |
16-22 |
|
|
Keywords |
|
|
|
Abstract |
Describing textures is a challenging problem in computer vision and pattern recognition. The classification problem involves assigning a category label to the texture class it belongs to. Several factors such as variations in scale, illumination and viewpoint make the problem of texture description extremely challenging. A variety of histogram based texture representations exists in literature.
However, combining multiple texture descriptors and assessing their complementarity is still an open research problem. In this paper, we first show that combining multiple local texture descriptors significantly improves the recognition performance compared to using a single best method alone. This
gain in performance is achieved at the cost of high-dimensional final image representation. To counter this problem, we propose to use an information-theoretic compression technique to obtain a compact texture description without any significant loss in accuracy. In addition, we perform a comprehensive
evaluation of pure color descriptors, popular in object recognition, for the problem of texture classification. Experiments are performed on four challenging texture datasets namely, KTH-TIPS-2a, KTH-TIPS-2b, FMD and Texture-10. The experiments clearly demonstrate that our proposed compact multi-texture approach outperforms the single best texture method alone. In all cases, discriminative color names outperforms other color features for texture classification. Finally, we show that combining discriminative color names with compact texture representation outperforms state-of-the-art methods by 7:8%, 4:3% and 5:0% on KTH-TIPS-2a, KTH-TIPS-2b and Texture-10 datasets respectively. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes  |
LAMP; 600.068; 600.079;ADAS;CIC |
Approved |
no |
|
|
Call Number |
Admin @ si @ KRW2015a |
Serial |
2587 |
|
Permanent link to this record |
|
|
|
|
Author |
Fahad Shahbaz Khan; Joost Van de Weijer; Muhammad Anwer Rao; Andrew Bagdanov; Michael Felsberg; Jorma |


|
|
Title |
Scale coding bag of deep features for human attribute and action recognition |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Machine Vision and Applications |
Abbreviated Journal |
MVAP |
|
|
Volume |
29 |
Issue |
1 |
Pages |
55-71 |
|
|
Keywords |
Action recognition; Attribute recognition; Bag of deep features |
|
|
Abstract |
Most approaches to human attribute and action recognition in still images are based on image representation in which multi-scale local features are pooled across scale into a single, scale-invariant encoding. Both in bag-of-words and the recently popular representations based on convolutional neural networks, local features are computed at multiple scales. However, these multi-scale convolutional features are pooled into a single scale-invariant representation. We argue that entirely scale-invariant image representations are sub-optimal and investigate approaches to scale coding within a bag of deep features framework. Our approach encodes multi-scale information explicitly during the image encoding stage. We propose two strategies to encode multi-scale information explicitly in the final image representation. We validate our two scale coding techniques on five datasets: Willow, PASCAL VOC 2010, PASCAL VOC 2012, Stanford-40 and Human Attributes (HAT-27). On all datasets, the proposed scale coding approaches outperform both the scale-invariant method and the standard deep features of the same network. Further, combining our scale coding approaches with standard deep features leads to consistent improvement over the state of the art. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes  |
LAMP; 600.068; 600.079; 600.106; 600.120;CIC;ADAS |
Approved |
no |
|
|
Call Number |
Admin @ si @ KWR2018 |
Serial |
3107 |
|
Permanent link to this record |
|
|
|
|
Author |
Xavier Boix; Josep M. Gonfaus; Joost Van de Weijer; Andrew Bagdanov; Joan Serrat; Jordi Gonzalez |


|
|
Title |
Harmony Potentials: Fusing Global and Local Scale for Semantic Image Segmentation |
Type |
Journal Article |
|
Year |
2012 |
Publication |
International Journal of Computer Vision |
Abbreviated Journal |
IJCV |
|
|
Volume |
96 |
Issue |
1 |
Pages |
83-102 |
|
|
Keywords |
|
|
|
Abstract |
The Hierarchical Conditional Random Field(HCRF) model have been successfully applied to a number of image labeling problems, including image segmentation. However, existing HCRF models of image segmentation do not allow multiple classes to be assigned to a single region, which limits their ability to incorporate contextual information across multiple scales.
At higher scales in the image, this representation yields an oversimplied model since multiple classes can be reasonably expected to appear within large regions. This simplied model particularly limits the impact of information at higher scales. Since class-label information at these scales is usually more reliable than at lower, noisier scales, neglecting this information is undesirable. To
address these issues, we propose a new consistency potential for image labeling problems, which we call the harmony potential. It can encode any possible combi-
nation of labels, penalizing only unlikely combinations of classes. We also propose an eective sampling strategy over this expanded label set that renders tractable the underlying optimization problem. Our approach obtains state-of-the-art results on two challenging, standard benchmark datasets for semantic image segmentation: PASCAL VOC 2010, and MSRC-21. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0920-5691 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes  |
ISE;CIC;ADAS |
Approved |
no |
|
|
Call Number |
Admin @ si @ BGW2012 |
Serial |
1718 |
|
Permanent link to this record |
|
|
|
|
Author |
Enric Marti; Carme Julia; Debora Gil |

|
|
Title |
A PBL Experience in the Teaching of Computer Graphics |
Type |
Journal Article |
|
Year |
2006 |
Publication |
Computer Graphics Forum |
Abbreviated Journal |
CGF |
|
|
Volume |
25 |
Issue |
1 |
Pages |
95-103 |
|
|
Keywords |
|
|
|
Abstract |
Project-Based Learning (PBL) is an educational strategy to improve student’s learning capability that, in recent years, has had a progressive acceptance in undergraduate studies. This methodology is based on solving a problem or project in a student working group. In this way, PBL focuses on learning the necessary tools to correctly find a solution to given problems. Since the learning initiative is transferred to the student, the PBL method promotes students own abilities. This allows a better assessment of the true workload that carries out the student in the subject. It follows that the methodology conforms to the guidelines of the Bologna document, which quantifies the student workload in a subject by means of the European credit transfer system (ECTS). PBL is currently applied in undergraduate studies needing strong practical training such as medicine, nursing or law sciences. Although this is also the case in engineering studies, amazingly, few experiences have been reported. In this paper we propose to use PBL in the educational organization of the Computer Graphics subjects in the Computer Science degree. Our PBL project focuses in the development of a C++ graphical environment based on the OpenGL libraries for visualization and handling of different graphical objects. The starting point is a basic skeleton that already includes lighting functions, perspective projection with mouse interaction to change the point of view and three predefined objects. Students have to complete this skeleton by adding their own functions to solve the project. A total number of 10 projects have been proposed and successfully solved. The exercises range from human face rendering to articulated objects, such as robot arms or puppets. In the present paper we extensively report the statement and educational objectives for two of the projects: solar system visualization and a chess game. We report our earlier educational experience based on the standard classroom theoretical, problem and practice sessions and the reasons that motivated searching for other learning methods. We have mainly chosen PBL because it improves the student learning initiative. We have applied the PBL educational model since the beginning of the second semester. The student’s feedback increases in his interest for the subject. We present a comparative study of the teachers’ and students’ workload between PBL and the classic teaching approach, which suggests that the workload increase in PBL is not as high as it seems. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Computer Graphics Forum |
Place of Publication |
Computer Vision CenterComputer Science Department Escola Tcnica Superior d’Enginyeria (UAB), Edifi |
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes  |
IAM;ADAS; |
Approved |
no |
|
|
Call Number |
IAM @ iam @ MJG2006a |
Serial |
1607 |
|
Permanent link to this record |
|
|
|
|
Author |
Sergio Vera; Debora Gil; Antonio Lopez; Miguel Angel Gonzalez Ballester |


|
|
Title |
Multilocal Creaseness Measure |
Type |
Journal |
|
Year |
2012 |
Publication |
The Insight Journal |
Abbreviated Journal |
IJ |
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
Ridges, Valley, Creaseness, Structure Tensor, Skeleton, |
|
|
Abstract |
This document describes the implementation using the Insight Toolkit of an algorithm for detecting creases (ridges and valleys) in N-dimensional images, based on the Local Structure Tensor of the image. In addition to the filter used to calculate the creaseness image, a filter for the computation of the structure tensor is also included in this submission. |
|
|
Address |
|
|
|
Corporate Author |
Alma IT Systems |
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
english |
Summary Language |
english |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes  |
IAM;ADAS; |
Approved |
no |
|
|
Call Number |
IAM @ iam @ VGL2012 |
Serial |
1840 |
|
Permanent link to this record |
|
|
|
|
Author |
Aura Hernandez-Sabate; Debora Gil; Jaume Garcia; Enric Marti |


|
|
Title |
Image-based Cardiac Phase Retrieval in Intravascular Ultrasound Sequences |
Type |
Journal Article |
|
Year |
2011 |
Publication |
IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control |
Abbreviated Journal |
T-UFFC |
|
|
Volume |
58 |
Issue |
1 |
Pages |
60-72 |
|
|
Keywords |
3-D exploring; ECG; band-pass filter; cardiac motion; cardiac phase retrieval; coronary arteries; electrocardiogram signal; image intensity local mean evolution; image-based cardiac phase retrieval; in vivo pullbacks acquisition; intravascular ultrasound sequences; longitudinal motion; signal extrema; time 36 ms; band-pass filters; biomedical ultrasonics; cardiovascular system; electrocardiography; image motion analysis; image retrieval; image sequences; medical image processing; ultrasonic imaging |
|
|
Abstract |
Longitudinal motion during in vivo pullbacks acquisition of intravascular ultrasound (IVUS) sequences is a major artifact for 3-D exploring of coronary arteries. Most current techniques are based on the electrocardiogram (ECG) signal to obtain a gated pullback without longitudinal motion by using specific hardware or the ECG signal itself. We present an image-based approach for cardiac phase retrieval from coronary IVUS sequences without an ECG signal. A signal reflecting cardiac motion is computed by exploring the image intensity local mean evolution. The signal is filtered by a band-pass filter centered at the main cardiac frequency. Phase is retrieved by computing signal extrema. The average frame processing time using our setup is 36 ms. Comparison to manually sampled sequences encourages a deeper study comparing them to ECG signals. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0885-3010 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes  |
IAM;ADAS |
Approved |
no |
|
|
Call Number |
IAM @ iam @ HGG2011 |
Serial |
1546 |
|
Permanent link to this record |
|
|
|
|
Author |
Aura Hernandez-Sabate; Jose Elias Yauri; Pau Folch; Miquel Angel Piera; Debora Gil |

|
|
Title |
Recognition of the Mental Workloads of Pilots in the Cockpit Using EEG Signals |
Type |
Journal Article |
|
Year |
2022 |
Publication |
Applied Sciences |
Abbreviated Journal |
APPLSCI |
|
|
Volume |
12 |
Issue |
5 |
Pages |
2298 |
|
|
Keywords |
Cognitive states; Mental workload; EEG analysis; Neural networks; Multimodal data fusion |
|
|
Abstract |
The commercial flightdeck is a naturally multi-tasking work environment, one in which interruptions are frequent come in various forms, contributing in many cases to aviation incident reports. Automatic characterization of pilots’ workloads is essential to preventing these kind of incidents. In addition, minimizing the physiological sensor network as much as possible remains both a challenge and a requirement. Electroencephalogram (EEG) signals have shown high correlations with specific cognitive and mental states, such as workload. However, there is not enough evidence in the literature to validate how well models generalize in cases of new subjects performing tasks with workloads similar to the ones included during the model’s training. In this paper, we propose a convolutional neural network to classify EEG features across different mental workloads in a continuous performance task test that partly measures working memory and working memory capacity. Our model is valid at the general population level and it is able to transfer task learning to pilot mental workload recognition in a simulated operational environment. |
|
|
Address |
February 2022 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes  |
IAM; ADAS; 600.139; 600.145; 600.118 |
Approved |
no |
|
|
Call Number |
Admin @ si @ HYF2022 |
Serial |
3720 |
|
Permanent link to this record |
|
|
|
|
Author |
Enric Marti; J.Roncaries; Debora Gil; Aura Hernandez-Sabate; Antoni Gurgui; Ferran Poveda |

|
|
Title |
PBL On Line: A proposal for the organization, part-time monitoring and assessment of PBL group activities |
Type |
Journal |
|
Year |
2015 |
Publication |
Journal of Technology and Science Education |
Abbreviated Journal |
JOTSE |
|
|
Volume |
5 |
Issue |
2 |
Pages |
87-96 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes  |
IAM; ADAS; 600.076; 600.075 |
Approved |
no |
|
|
Call Number |
Admin @ si @ MRG2015 |
Serial |
2608 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; Aura Hernandez-Sabate; Mireia Brunat;Steven Jansen; Jordi Martinez-Vilalta |


|
|
Title |
Structure-preserving smoothing of biomedical images |
Type |
Journal Article |
|
Year |
2011 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
44 |
Issue |
9 |
Pages |
1842-1851 |
|
|
Keywords |
Non-linear smoothing; Differential geometry; Anatomical structures; segmentation; Cardiac magnetic resonance; Computerized tomography |
|
|
Abstract |
Smoothing of biomedical images should preserve gray-level transitions between adjacent tissues, while restoring contours consistent with anatomical structures. Anisotropic diffusion operators are based on image appearance discontinuities (either local or contextual) and might fail at weak inter-tissue transitions. Meanwhile, the output of block-wise and morphological operations is prone to present a block structure due to the shape and size of the considered pixel neighborhood. In this contribution, we use differential geometry concepts to define a diffusion operator that restricts to image consistent level-sets. In this manner, the final state is a non-uniform intensity image presenting homogeneous inter-tissue transitions along anatomical structures, while smoothing intra-structure texture. Experiments on different types of medical images (magnetic resonance, computerized tomography) illustrate its benefit on a further process (such as segmentation) of images. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0031-3203 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes  |
IAM; ADAS |
Approved |
no |
|
|
Call Number |
IAM @ iam @ GHB2011 |
Serial |
1526 |
|
Permanent link to this record |