|
Records |
Links |
|
Author |
Joan Marc Llargues Asensio; Juan Peralta; Raul Arrabales; Manuel Gonzalez Bedia; Paulo Cortez; Antonio Lopez |
|
|
Title |
Artificial Intelligence Approaches for the Generation and Assessment of Believable Human-Like Behaviour in Virtual Characters |
Type |
Journal Article |
|
Year |
2014 |
Publication |
Expert Systems With Applications |
Abbreviated Journal |
EXSY |
|
|
Volume |
41 |
Issue |
16 |
Pages |
7281–7290 |
|
|
Keywords |
Turing test; Human-like behaviour; Believability; Non-player characters; Cognitive architectures; Genetic algorithm; Artificial neural networks |
|
|
Abstract |
Having artificial agents to autonomously produce human-like behaviour is one of the most ambitious original goals of Artificial Intelligence (AI) and remains an open problem nowadays. The imitation game originally proposed by Turing constitute a very effective method to prove the indistinguishability of an artificial agent. The behaviour of an agent is said to be indistinguishable from that of a human when observers (the so-called judges in the Turing test) cannot tell apart humans and non-human agents. Different environments, testing protocols, scopes and problem domains can be established to develop limited versions or variants of the original Turing test. In this paper we use a specific version of the Turing test, based on the international BotPrize competition, built in a First-Person Shooter video game, where both human players and non-player characters interact in complex virtual environments. Based on our past experience both in the BotPrize competition and other robotics and computer game AI applications we have developed three new more advanced controllers for believable agents: two based on a combination of the CERA–CRANIUM and SOAR cognitive architectures and other based on ADANN, a system for the automatic evolution and adaptation of artificial neural networks. These two new agents have been put to the test jointly with CCBot3, the winner of BotPrize 2010 competition (Arrabales et al., 2012), and have showed a significant improvement in the humanness ratio. Additionally, we have confronted all these bots to both First-person believability assessment (BotPrize original judging protocol) and Third-person believability assessment, demonstrating that the active involvement of the judge has a great impact in the recognition of human-like behaviour. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.055; 600.057; 600.076 |
Approved |
no |
|
|
Call Number |
Admin @ si @ LPA2014 |
Serial |
2500 |
|
Permanent link to this record |
|
|
|
|
Author |
Daniel Ponsa; Joan Serrat; Antonio Lopez |
|
|
Title |
On-board image-based vehicle detection and tracking |
Type |
Journal Article |
|
Year |
2011 |
Publication |
Transactions of the Institute of Measurement and Control |
Abbreviated Journal |
TIM |
|
|
Volume |
33 |
Issue |
7 |
Pages |
783-805 |
|
|
Keywords |
vehicle detection |
|
|
Abstract |
In this paper we present a computer vision system for daytime vehicle detection and localization, an essential step in the development of several types of advanced driver assistance systems. It has a reduced processing time and high accuracy thanks to the combination of vehicle detection with lane-markings estimation and temporal tracking of both vehicles and lane markings. Concerning vehicle detection, our main contribution is a frame scanning process that inspects images according to the geometry of image formation, and with an Adaboost-based detector that is robust to the variability in the different vehicle types (car, van, truck) and lighting conditions. In addition, we propose a new method to estimate the most likely three-dimensional locations of vehicles on the road ahead. With regards to the lane-markings estimation component, we have two main contributions. First, we employ a different image feature to the other commonly used edges: we use ridges, which are better suited to this problem. Second, we adapt RANSAC, a generic robust estimation method, to fit a parametric model of a pair of lane markings to the image features. We qualitatively assess our vehicle detection system in sequences captured on several road types and under very different lighting conditions. The processed videos are available on a web page associated with this paper. A quantitative evaluation of the system has shown quite accurate results (a low number of false positives and negatives) at a reasonable computation time. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS |
Approved |
no |
|
|
Call Number |
ADAS @ adas @ PSL2011 |
Serial |
1413 |
|
Permanent link to this record |
|
|
|
|
Author |
Joan Serrat; Ferran Diego; Felipe Lumbreras; Jose Manuel Alvarez; Antonio Lopez; C. Elvira |
|
|
Title |
Dynamic Comparison of Headlights |
Type |
Journal Article |
|
Year |
2008 |
Publication |
Journal of Automobile Engineering |
Abbreviated Journal |
|
|
|
Volume |
222 |
Issue |
5 |
Pages |
643–656 |
|
|
Keywords |
video alignment |
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS |
Approved |
no |
|
|
Call Number |
ADAS @ adas @ SDL2008a |
Serial |
958 |
|
Permanent link to this record |
|
|
|
|
Author |
Ferran Diego; Daniel Ponsa; Joan Serrat; Antonio Lopez |
|
|
Title |
Video Alignment for Change Detection |
Type |
Journal Article |
|
Year |
2011 |
Publication |
IEEE Transactions on Image Processing |
Abbreviated Journal |
TIP |
|
|
Volume |
20 |
Issue |
7 |
Pages |
1858-1869 |
|
|
Keywords |
video alignment |
|
|
Abstract |
In this work, we address the problem of aligning two video sequences. Such alignment refers to synchronization, i.e., the establishment of temporal correspondence between frames of the first and second video, followed by spatial registration of all the temporally corresponding frames. Video synchronization and alignment have been attempted before, but most often in the relatively simple cases of fixed or rigidly attached cameras and simultaneous acquisition. In addition, restrictive assumptions have been applied, including linear time correspondence or the knowledge of the complete trajectories of corresponding scene points; to some extent, these assumptions limit the practical applicability of any solutions developed. We intend to solve the more general problem of aligning video sequences recorded by independently moving cameras that follow similar trajectories, based only on the fusion of image intensity and GPS information. The novelty of our approach is to pose the synchronization as a MAP inference problem on a Bayesian network including the observations from these two sensor types, which have been proved complementary. Alignment results are presented in the context of videos recorded from vehicles driving along the same track at different times, for different road types. In addition, we explore two applications of the proposed video alignment method, both based on change detection between aligned videos. One is the detection of vehicles, which could be of use in ADAS. The other is online difference spotting videos of surveillance rounds. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; IF |
Approved |
no |
|
|
Call Number |
DPS 2011; ADAS @ adas @ dps2011 |
Serial |
1705 |
|
Permanent link to this record |
|
|
|
|
Author |
Ferran Diego; Joan Serrat; Antonio Lopez |
|
|
Title |
Joint spatio-temporal alignment of sequences |
Type |
Journal Article |
|
Year |
2013 |
Publication |
IEEE Transactions on Multimedia |
Abbreviated Journal |
TMM |
|
|
Volume |
15 |
Issue |
6 |
Pages |
1377-1387 |
|
|
Keywords |
video alignment |
|
|
Abstract |
Video alignment is important in different areas of computer vision such as wide baseline matching, action recognition, change detection, video copy detection and frame dropping prevention. Current video alignment methods usually deal with a relatively simple case of fixed or rigidly attached cameras or simultaneous acquisition. Therefore, in this paper we propose a joint video alignment for bringing two video sequences into a spatio-temporal alignment. Specifically, the novelty of the paper is to formulate the video alignment to fold the spatial and temporal alignment into a single alignment framework. This simultaneously satisfies a frame-correspondence and frame-alignment similarity; exploiting the knowledge among neighbor frames by a standard pairwise Markov random field (MRF). This new formulation is able to handle the alignment of sequences recorded at different times by independent moving cameras that follows a similar trajectory, and also generalizes the particular cases that of fixed geometric transformation and/or linear temporal mapping. We conduct experiments on different scenarios such as sequences recorded simultaneously or by moving cameras to validate the robustness of the proposed approach. The proposed method provides the highest video alignment accuracy compared to the state-of-the-art methods on sequences recorded from vehicles driving along the same track at different times. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1520-9210 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS |
Approved |
no |
|
|
Call Number |
Admin @ si @ DSL2013; ADAS @ adas @ |
Serial |
2228 |
|
Permanent link to this record |