toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Joan Serrat; Felipe Lumbreras; Antonio Lopez edit   pdf
doi  openurl
  Title Cost estimation of custom hoses from STL files and CAD drawings Type Journal Article
  Year 2013 Publication Computers in Industry Abbreviated Journal COMPUTIND  
  Volume 64 Issue 3 Pages 299-309  
  Keywords On-line quotation; STL format; Regression; Gaussian process  
  Abstract We present a method for the cost estimation of custom hoses from CAD models. They can come in two formats, which are easy to generate: a STL file or the image of a CAD drawing showing several orthogonal projections. The challenges in either cases are, first, to obtain from them a high level 3D description of the shape, and second, to learn a regression function for the prediction of the manufacturing time, based on geometric features of the reconstructed shape. The chosen description is the 3D line along the medial axis of the tube and the diameter of the circular sections along it. In order to extract it from STL files, we have adapted RANSAC, a robust parametric fitting algorithm. As for CAD drawing images, we propose a new technique for 3D reconstruction from data entered on any number of orthogonal projections. The regression function is a Gaussian process, which does not constrain the function to adopt any specific form and is governed by just two parameters. We assess the accuracy of the manufacturing time estimation by k-fold cross validation on 171 STL file models for which the time is provided by an expert. The results show the feasibility of the method, whereby the relative error for 80% of the testing samples is below 15%.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition (up) Conference  
  Notes ADAS; 600.057; 600.054; 605.203 Approved no  
  Call Number Admin @ si @ SLL2013; ADAS @ adas @ Serial 2161  
Permanent link to this record
 

 
Author Javier Marin; David Vazquez; Antonio Lopez; Jaume Amores; Ludmila I. Kuncheva edit   pdf
url  doi
openurl 
  Title Occlusion handling via random subspace classifiers for human detection Type Journal Article
  Year 2014 Publication IEEE Transactions on Systems, Man, and Cybernetics (Part B) Abbreviated Journal TSMCB  
  Volume 44 Issue 3 Pages 342-354  
  Keywords Pedestriand Detection; occlusion handling  
  Abstract This paper describes a general method to address partial occlusions for human detection in still images. The Random Subspace Method (RSM) is chosen for building a classifier ensemble robust against partial occlusions. The component classifiers are chosen on the basis of their individual and combined performance. The main contribution of this work lies in our approach’s capability to improve the detection rate when partial occlusions are present without compromising the detection performance on non occluded data. In contrast to many recent approaches, we propose a method which does not require manual labelling of body parts, defining any semantic spatial components, or using additional data coming from motion or stereo. Moreover, the method can be easily extended to other object classes. The experiments are performed on three large datasets: the INRIA person dataset, the Daimler Multicue dataset, and a new challenging dataset, called PobleSec, in which a considerable number of targets are partially occluded. The different approaches are evaluated at the classification and detection levels for both partially occluded and non-occluded data. The experimental results show that our detector outperforms state-of-the-art approaches in the presence of partial occlusions, while offering performance and reliability similar to those of the holistic approach on non-occluded data. The datasets used in our experiments have been made publicly available for benchmarking purposes  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2168-2267 ISBN Medium  
  Area Expedition (up) Conference  
  Notes ADAS; 605.203; 600.057; 600.054; 601.042; 601.187; 600.076 Approved no  
  Call Number ADAS @ adas @ MVL2014 Serial 2213  
Permanent link to this record
 

 
Author Jiaolong Xu; David Vazquez; Antonio Lopez; Javier Marin; Daniel Ponsa edit   pdf
doi  isbn
openurl 
  Title Learning a Part-based Pedestrian Detector in Virtual World Type Journal Article
  Year 2014 Publication IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS  
  Volume 15 Issue 5 Pages 2121-2131  
  Keywords Domain Adaptation; Pedestrian Detection; Virtual Worlds  
  Abstract Detecting pedestrians with on-board vision systems is of paramount interest for assisting drivers to prevent vehicle-to-pedestrian accidents. The core of a pedestrian detector is its classification module, which aims at deciding if a given image window contains a pedestrian. Given the difficulty of this task, many classifiers have been proposed during the last fifteen years. Among them, the so-called (deformable) part-based classifiers including multi-view modeling are usually top ranked in accuracy. Training such classifiers is not trivial since a proper aspect clustering and spatial part alignment of the pedestrian training samples are crucial for obtaining an accurate classifier. In this paper, first we perform automatic aspect clustering and part alignment by using virtual-world pedestrians, i.e., human annotations are not required. Second, we use a mixture-of-parts approach that allows part sharing among different aspects. Third, these proposals are integrated in a learning framework which also allows to incorporate real-world training data to perform domain adaptation between virtual- and real-world cameras. Overall, the obtained results on four popular on-board datasets show that our proposal clearly outperforms the state-of-the-art deformable part-based detector known as latent SVM.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1931-0587 ISBN 978-1-4673-2754-1 Medium  
  Area Expedition (up) Conference  
  Notes ADAS; 600.076 Approved no  
  Call Number ADAS @ adas @ XVL2014 Serial 2433  
Permanent link to this record
 

 
Author J.S. Cope; P.Remagnino; S.Mannan; Katerine Diaz; Francesc J. Ferri; P.Wilkin edit  url
doi  openurl
  Title Reverse Engineering Expert Visual Observations: From Fixations To The Learning Of Spatial Filters With A Neural-Gas Algorithm Type Journal Article
  Year 2013 Publication Expert Systems with Applications Abbreviated Journal EXWA  
  Volume 40 Issue 17 Pages 6707-6712  
  Keywords Neural gas; Expert vision; Eye-tracking; Fixations  
  Abstract Human beings can become experts in performing specific vision tasks, for example, doctors analysing medical images, or botanists studying leaves. With sufficient knowledge and experience, people can become very efficient at such tasks. When attempting to perform these tasks with a machine vision system, it would be highly beneficial to be able to replicate the process which the expert undergoes. Advances in eye-tracking technology can provide data to allow us to discover the manner in which an expert studies an image. This paper presents a first step towards utilizing these data for computer vision purposes. A growing-neural-gas algorithm is used to learn a set of Gabor filters which give high responses to image regions which a human expert fixated on. These filters can then be used to identify regions in other images which are likely to be useful for a given vision task. The algorithm is evaluated by learning filters for locating specific areas of plant leaves.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4174 ISBN Medium  
  Area Expedition (up) Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ CRM2013 Serial 2438  
Permanent link to this record
 

 
Author Naveen Onkarappa; Angel Sappa edit  doi
openurl 
  Title Synthetic sequences and ground-truth flow field generation for algorithm validation Type Journal Article
  Year 2015 Publication Multimedia Tools and Applications Abbreviated Journal MTAP  
  Volume 74 Issue 9 Pages 3121-3135  
  Keywords Ground-truth optical flow; Synthetic sequence; Algorithm validation  
  Abstract Research in computer vision is advancing by the availability of good datasets that help to improve algorithms, validate results and obtain comparative analysis. The datasets can be real or synthetic. For some of the computer vision problems such as optical flow it is not possible to obtain ground-truth optical flow with high accuracy in natural outdoor real scenarios directly by any sensor, although it is possible to obtain ground-truth data of real scenarios in a laboratory setup with limited motion. In this difficult situation computer graphics offers a viable option for creating realistic virtual scenarios. In the current work we present a framework to design virtual scenes and generate sequences as well as ground-truth flow fields. Particularly, we generate a dataset containing sequences of driving scenarios. The sequences in the dataset vary in different speeds of the on-board vision system, different road textures, complex motion of vehicle and independent moving vehicles in the scene. This dataset enables analyzing and adaptation of existing optical flow methods, and leads to invention of new approaches particularly for driver assistance systems.  
  Address  
  Corporate Author Thesis  
  Publisher Springer US Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1380-7501 ISBN Medium  
  Area Expedition (up) Conference  
  Notes ADAS; 600.055; 601.215; 600.076 Approved no  
  Call Number Admin @ si @ OnS2014b Serial 2472  
Permanent link to this record
 

 
Author Monica Piñol; Angel Sappa; Ricardo Toledo edit  doi
openurl 
  Title Adaptive Feature Descriptor Selection based on a Multi-Table Reinforcement Learning Strategy Type Journal Article
  Year 2015 Publication Neurocomputing Abbreviated Journal NEUCOM  
  Volume 150 Issue A Pages 106–115  
  Keywords Reinforcement learning; Q-learning; Bag of features; Descriptors  
  Abstract This paper presents and evaluates a framework to improve the performance of visual object classification methods, which are based on the usage of image feature descriptors as inputs. The goal of the proposed framework is to learn the best descriptor for each image in a given database. This goal is reached by means of a reinforcement learning process using the minimum information. The visual classification system used to demonstrate the proposed framework is based on a bag of features scheme, and the reinforcement learning technique is implemented through the Q-learning approach. The behavior of the reinforcement learning with different state definitions is evaluated. Additionally, a method that combines all these states is formulated in order to select the optimal state. Finally, the chosen actions are obtained from the best set of image descriptors in the literature: PHOW, SIFT, C-SIFT, SURF and Spin. Experimental results using two public databases (ETH and COIL) are provided showing both the validity of the proposed approach and comparisons with state of the art. In all the cases the best results are obtained with the proposed approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition (up) Conference  
  Notes ADAS; 600.055; 600.076 Approved no  
  Call Number Admin @ si @ PST2015 Serial 2473  
Permanent link to this record
 

 
Author P. Ricaurte ; C. Chilan; Cristhian A. Aguilera-Carrasco; Boris X. Vintimilla; Angel Sappa edit  doi
openurl 
  Title Feature Point Descriptors: Infrared and Visible Spectra Type Journal Article
  Year 2014 Publication Sensors Abbreviated Journal SENS  
  Volume 14 Issue 2 Pages 3690-3701  
  Keywords  
  Abstract This manuscript evaluates the behavior of classical feature point descriptors when they are used in images from long-wave infrared spectral band and compare them with the results obtained in the visible spectrum. Robustness to changes in rotation, scaling, blur, and additive noise are analyzed using a state of the art framework. Experimental results using a cross-spectral outdoor image data set are presented and conclusions from these experiments are given.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition (up) Conference  
  Notes ADAS;600.055; 600.076 Approved no  
  Call Number Admin @ si @ RCA2014a Serial 2474  
Permanent link to this record
 

 
Author Joan Marc Llargues Asensio; Juan Peralta; Raul Arrabales; Manuel Gonzalez Bedia; Paulo Cortez; Antonio Lopez edit  doi
openurl 
  Title Artificial Intelligence Approaches for the Generation and Assessment of Believable Human-Like Behaviour in Virtual Characters Type Journal Article
  Year 2014 Publication Expert Systems With Applications Abbreviated Journal EXSY  
  Volume 41 Issue 16 Pages 7281–7290  
  Keywords Turing test; Human-like behaviour; Believability; Non-player characters; Cognitive architectures; Genetic algorithm; Artificial neural networks  
  Abstract Having artificial agents to autonomously produce human-like behaviour is one of the most ambitious original goals of Artificial Intelligence (AI) and remains an open problem nowadays. The imitation game originally proposed by Turing constitute a very effective method to prove the indistinguishability of an artificial agent. The behaviour of an agent is said to be indistinguishable from that of a human when observers (the so-called judges in the Turing test) cannot tell apart humans and non-human agents. Different environments, testing protocols, scopes and problem domains can be established to develop limited versions or variants of the original Turing test. In this paper we use a specific version of the Turing test, based on the international BotPrize competition, built in a First-Person Shooter video game, where both human players and non-player characters interact in complex virtual environments. Based on our past experience both in the BotPrize competition and other robotics and computer game AI applications we have developed three new more advanced controllers for believable agents: two based on a combination of the CERA–CRANIUM and SOAR cognitive architectures and other based on ADANN, a system for the automatic evolution and adaptation of artificial neural networks. These two new agents have been put to the test jointly with CCBot3, the winner of BotPrize 2010 competition (Arrabales et al., 2012), and have showed a significant improvement in the humanness ratio. Additionally, we have confronted all these bots to both First-person believability assessment (BotPrize original judging protocol) and Third-person believability assessment, demonstrating that the active involvement of the judge has a great impact in the recognition of human-like behaviour.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition (up) Conference  
  Notes ADAS; 600.055; 600.057; 600.076 Approved no  
  Call Number Admin @ si @ LPA2014 Serial 2500  
Permanent link to this record
 

 
Author Jose Manuel Alvarez; Antonio Lopez; Theo Gevers; Felipe Lumbreras edit   pdf
doi  openurl
  Title Combining Priors, Appearance and Context for Road Detection Type Journal Article
  Year 2014 Publication IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS  
  Volume 15 Issue 3 Pages 1168-1178  
  Keywords Illuminant invariance; lane markings; road detection; road prior; road scene understanding; vanishing point; 3-D scene layout  
  Abstract Detecting the free road surface ahead of a moving vehicle is an important research topic in different areas of computer vision, such as autonomous driving or car collision warning.
Current vision-based road detection methods are usually based solely on low-level features. Furthermore, they generally assume structured roads, road homogeneity, and uniform lighting conditions, constraining their applicability in real-world scenarios. In this paper, road priors and contextual information are introduced for road detection. First, we propose an algorithm to estimate road priors online using geographical information, providing relevant initial information about the road location. Then, contextual cues, including horizon lines, vanishing points, lane markings, 3-D scene layout, and road geometry, are used in addition to low-level cues derived from the appearance of roads. Finally, a generative model is used to combine these cues and priors, leading to a road detection method that is, to a large degree, robust to varying imaging conditions, road types, and scenarios.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1524-9050 ISBN Medium  
  Area Expedition (up) Conference  
  Notes ADAS; 600.076;ISE Approved no  
  Call Number Admin @ si @ ALG2014 Serial 2501  
Permanent link to this record
 

 
Author Fahad Shahbaz Khan; Joost Van de Weijer; Muhammad Anwer Rao; Michael Felsberg; Carlo Gatta edit   pdf
doi  openurl
  Title Semantic Pyramids for Gender and Action Recognition Type Journal Article
  Year 2014 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 23 Issue 8 Pages 3633-3645  
  Keywords  
  Abstract Person description is a challenging problem in computer vision. We investigated two major aspects of person description: 1) gender and 2) action recognition in still images. Most state-of-the-art approaches for gender and action recognition rely on the description of a single body part, such as face or full-body. However, relying on a single body part is suboptimal due to significant variations in scale, viewpoint, and pose in real-world images. This paper proposes a semantic pyramid approach for pose normalization. Our approach is fully automatic and based on combining information from full-body, upper-body, and face regions for gender and action recognition in still images. The proposed approach does not require any annotations for upper-body and face of a person. Instead, we rely on pretrained state-of-the-art upper-body and face detectors to automatically extract semantic information of a person. Given multiple bounding boxes from each body part detector, we then propose a simple method to select the best candidate bounding box, which is used for feature extraction. Finally, the extracted features from the full-body, upper-body, and face regions are combined into a single representation for classification. To validate the proposed approach for gender recognition, experiments are performed on three large data sets namely: 1) human attribute; 2) head-shoulder; and 3) proxemics. For action recognition, we perform experiments on four data sets most used for benchmarking action recognition in still images: 1) Sports; 2) Willow; 3) PASCAL VOC 2010; and 4) Stanford-40. Our experiments clearly demonstrate that the proposed approach, despite its simplicity, outperforms state-of-the-art methods for gender and action recognition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1057-7149 ISBN Medium  
  Area Expedition (up) Conference  
  Notes CIC; LAMP; 601.160; 600.074; 600.079;MILAB;ADAS Approved no  
  Call Number Admin @ si @ KWR2014 Serial 2507  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: