|
Records |
Links |
|
Author |
Katerine Diaz; Francesc J. Ferri; W. Diaz |
|
|
Title |
Incremental Generalized Discriminative Common Vectors for Image Classification |
Type |
Journal Article |
|
Year |
2015 |
Publication |
IEEE Transactions on Neural Networks and Learning Systems |
Abbreviated Journal |
TNNLS |
|
|
Volume |
26 |
Issue |
8 |
Pages |
1761 - 1775 |
|
|
Keywords |
|
|
|
Abstract |
Subspace-based methods have become popular due to their ability to appropriately represent complex data in such a way that both dimensionality is reduced and discriminativeness is enhanced. Several recent works have concentrated on the discriminative common vector (DCV) method and other closely related algorithms also based on the concept of null space. In this paper, we present a generalized incremental formulation of the DCV methods, which allows the update of a given model by considering the addition of new examples even from unseen classes. Having efficient incremental formulations of well-behaved batch algorithms allows us to conveniently adapt previously trained classifiers without the need of recomputing them from scratch. The proposed generalized incremental method has been empirically validated in different case studies from different application domains (faces, objects, and handwritten digits) considering several different scenarios in which new data are continuously added at different rates starting from an initial model. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2162-237X |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.076 |
Approved |
no |
|
|
Call Number |
Admin @ si @ DFD2015 |
Serial |
2547 |
|
Permanent link to this record |
|
|
|
|
Author |
Katerine Diaz; Jesus Martinez del Rincon; Aura Hernandez-Sabate |
|
|
Title |
Decremental generalized discriminative common vectors applied to images classification |
Type |
Journal Article |
|
Year |
2017 |
Publication |
Knowledge-Based Systems |
Abbreviated Journal |
KBS |
|
|
Volume |
131 |
Issue |
|
Pages |
46-57 |
|
|
Keywords |
Decremental learning; Generalized Discriminative Common Vectors; Feature extraction; Linear subspace methods; Classification |
|
|
Abstract |
In this paper, a novel decremental subspace-based learning method called Decremental Generalized Discriminative Common Vectors method (DGDCV) is presented. The method makes use of the concept of decremental learning, which we introduce in the field of supervised feature extraction and classification. By efficiently removing unnecessary data and/or classes for a knowledge base, our methodology is able to update the model without recalculating the full projection or accessing to the previously processed training data, while retaining the previously acquired knowledge. The proposed method has been validated in 6 standard face recognition datasets, showing a considerable computational gain without compromising the accuracy of the model. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.118; 600.121;IAM |
Approved |
no |
|
|
Call Number |
Admin @ si @ DMH2017a |
Serial |
3003 |
|
Permanent link to this record |
|
|
|
|
Author |
Katerine Diaz; Jesus Martinez del Rincon; Aura Hernandez-Sabate; Debora Gil |
|
|
Title |
Continuous head pose estimation using manifold subspace embedding and multivariate regression |
Type |
Journal Article |
|
Year |
2018 |
Publication |
IEEE Access |
Abbreviated Journal |
ACCESS |
|
|
Volume |
6 |
Issue |
|
Pages |
18325 - 18334 |
|
|
Keywords |
Head Pose estimation; HOG features; Generalized Discriminative Common Vectors; B-splines; Multiple linear regression |
|
|
Abstract |
In this paper, a continuous head pose estimation system is proposed to estimate yaw and pitch head angles from raw facial images. Our approach is based on manifold learningbased methods, due to their promising generalization properties shown for face modelling from images. The method combines histograms of oriented gradients, generalized discriminative common vectors and continuous local regression to achieve successful performance. Our proposal was tested on multiple standard face datasets, as well as in a realistic scenario. Results show a considerable performance improvement and a higher consistence of our model in comparison with other state-of-art methods, with angular errors varying between 9 and 17 degrees. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2169-3536 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.118;IAM |
Approved |
no |
|
|
Call Number |
Admin @ si @ DMH2018b |
Serial |
3091 |
|
Permanent link to this record |
|
|
|
|
Author |
Katerine Diaz; Jesus Martinez del Rincon; Aura Hernandez-Sabate; Marçal Rusiñol; Francesc J. Ferri |
|
|
Title |
Fast Kernel Generalized Discriminative Common Vectors for Feature Extraction |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Journal of Mathematical Imaging and Vision |
Abbreviated Journal |
JMIV |
|
|
Volume |
60 |
Issue |
4 |
Pages |
512-524 |
|
|
Keywords |
|
|
|
Abstract |
This paper presents a supervised subspace learning method called Kernel Generalized Discriminative Common Vectors (KGDCV), as a novel extension of the known Discriminative Common Vectors method with Kernels. Our method combines the advantages of kernel methods to model complex data and solve nonlinear
problems with moderate computational complexity, with the better generalization properties of generalized approaches for large dimensional data. These attractive combination makes KGDCV specially suited for feature extraction and classification in computer vision, image processing and pattern recognition applications. Two different approaches to this generalization are proposed, a first one based on the kernel trick (KT) and a second one based on the nonlinear projection trick (NPT) for even higher efficiency. Both methodologies
have been validated on four different image datasets containing faces, objects and handwritten digits, and compared against well known non-linear state-of-art methods. Results show better discriminant properties than other generalized approaches both linear or kernel. In addition, the KGDCV-NPT approach presents a considerable computational gain, without compromising the accuracy of the model. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; ADAS; 600.086; 600.130; 600.121; 600.118; 600.129;IAM |
Approved |
no |
|
|
Call Number |
Admin @ si @ DMH2018a |
Serial |
3062 |
|
Permanent link to this record |
|
|
|
|
Author |
Katerine Diaz; Jesus Martinez del Rincon; Marçal Rusiñol; Aura Hernandez-Sabate |
|
|
Title |
Feature Extraction by Using Dual-Generalized Discriminative Common Vectors |
Type |
Journal Article |
|
Year |
2019 |
Publication |
Journal of Mathematical Imaging and Vision |
Abbreviated Journal |
JMIV |
|
|
Volume |
61 |
Issue |
3 |
Pages |
331-351 |
|
|
Keywords |
Online feature extraction; Generalized discriminative common vectors; Dual learning; Incremental learning; Decremental learning |
|
|
Abstract |
In this paper, a dual online subspace-based learning method called dual-generalized discriminative common vectors (Dual-GDCV) is presented. The method extends incremental GDCV by exploiting simultaneously both the concepts of incremental and decremental learning for supervised feature extraction and classification. Our methodology is able to update the feature representation space without recalculating the full projection or accessing the previously processed training data. It allows both adding information and removing unnecessary data from a knowledge base in an efficient way, while retaining the previously acquired knowledge. The proposed method has been theoretically proved and empirically validated in six standard face recognition and classification datasets, under two scenarios: (1) removing and adding samples of existent classes, and (2) removing and adding new classes to a classification problem. Results show a considerable computational gain without compromising the accuracy of the model in comparison with both batch methodologies and other state-of-art adaptive methods. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; ADAS; 600.084; 600.118; 600.121; 600.129;IAM |
Approved |
no |
|
|
Call Number |
Admin @ si @ DRR2019 |
Serial |
3172 |
|
Permanent link to this record |
|
|
|
|
Author |
Katerine Diaz; Konstantia Georgouli; Anastasios Koidis; Jesus Martinez del Rincon |
|
|
Title |
Incremental model learning for spectroscopy-based food analysis |
Type |
Journal Article |
|
Year |
2017 |
Publication |
Chemometrics and Intelligent Laboratory Systems |
Abbreviated Journal |
CILS |
|
|
Volume |
167 |
Issue |
|
Pages |
123-131 |
|
|
Keywords |
Incremental model learning; IGDCV technique; Subspace based learning; IdentificationVegetable oils; FT-IR spectroscopy |
|
|
Abstract |
In this paper we propose the use of incremental learning for creating and improving multivariate analysis models in the field of chemometrics of spectral data. As main advantages, our proposed incremental subspace-based learning allows creating models faster, progressively improving previously created models and sharing them between laboratories and institutions without requiring transferring or disclosing individual spectra samples. In particular, our approach allows to improve the generalization and adaptability of previously generated models with a few new spectral samples to be applicable to real-world situations. The potential of our approach is demonstrated using vegetable oil type identification based on spectroscopic data as case study. Results show how incremental models maintain the accuracy of batch learning methodologies while reducing their computational cost and handicaps. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.118 |
Approved |
no |
|
|
Call Number |
Admin @ si @ DGK2017 |
Serial |
3002 |
|
Permanent link to this record |
|
|
|
|
Author |
Lluis Pere de las Heras; Ahmed Sheraz; Marcus Liwicki; Ernest Valveny; Gemma Sanchez |
|
|
Title |
Statistical Segmentation and Structural Recognition for Floor Plan Interpretation |
Type |
Journal Article |
|
Year |
2014 |
Publication |
International Journal on Document Analysis and Recognition |
Abbreviated Journal |
IJDAR |
|
|
Volume |
17 |
Issue |
3 |
Pages |
221-237 |
|
|
Keywords |
|
|
|
Abstract |
A generic method for floor plan analysis and interpretation is presented in this article. The method, which is mainly inspired by the way engineers draw and interpret floor plans, applies two recognition steps in a bottom-up manner. First, basic building blocks, i.e., walls, doors, and windows are detected using a statistical patch-based segmentation approach. Second, a graph is generated, and structural pattern recognition techniques are applied to further locate the main entities, i.e., rooms of the building. The proposed approach is able to analyze any type of floor plan regardless of the notation used. We have evaluated our method on different publicly available datasets of real architectural floor plans with different notations. The overall detection and recognition accuracy is about 95 %, which is significantly better than any other state-of-the-art method. Our approach is generic enough such that it could be easily adopted to the recognition and interpretation of any other printed machine-generated structured documents. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Berlin Heidelberg |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1433-2833 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; ADAS; 600.076; 600.077 |
Approved |
no |
|
|
Call Number |
HSL2014 |
Serial |
2370 |
|
Permanent link to this record |
|
|
|
|
Author |
Lluis Pere de las Heras; Oriol Ramos Terrades; Sergi Robles; Gemma Sanchez |
|
|
Title |
CVC-FP and SGT: a new database for structural floor plan analysis and its groundtruthing tool |
Type |
Journal Article |
|
Year |
2015 |
Publication |
International Journal on Document Analysis and Recognition |
Abbreviated Journal |
IJDAR |
|
|
Volume |
18 |
Issue |
1 |
Pages |
15-30 |
|
|
Keywords |
|
|
|
Abstract |
Recent results on structured learning methods have shown the impact of structural information in a wide range of pattern recognition tasks. In the field of document image analysis, there is a long experience on structural methods for the analysis and information extraction of multiple types of documents. Yet, the lack of conveniently annotated and free access databases has not benefited the progress in some areas such as technical drawing understanding. In this paper, we present a floor plan database, named CVC-FP, that is annotated for the architectural objects and their structural relations. To construct this database, we have implemented a groundtruthing tool, the SGT tool, that allows to make specific this sort of information in a natural manner. This tool has been made for general purpose groundtruthing: It allows to define own object classes and properties, multiple labeling options are possible, grants the cooperative work, and provides user and version control. We finally have collected some of the recent work on floor plan interpretation and present a quantitative benchmark for this database. Both CVC-FP database and the SGT tool are freely released to the research community to ease comparisons between methods and boost reproducible research. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Berlin Heidelberg |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1433-2833 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; ADAS; 600.061; 600.076; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ HRR2015 |
Serial |
2567 |
|
Permanent link to this record |
|
|
|
|
Author |
M. Altillawi; S. Li; S.M. Prakhya; Z. Liu; Joan Serrat |
|
|
Title |
Implicit Learning of Scene Geometry From Poses for Global Localization |
Type |
Journal Article |
|
Year |
2024 |
Publication |
IEEE Robotics and Automation Letters |
Abbreviated Journal |
ROBOTAUTOMLET |
|
|
Volume |
9 |
Issue |
2 |
Pages |
955-962 |
|
|
Keywords |
Localization; Localization and mapping; Deep learning for visual perception; Visual learning |
|
|
Abstract |
Global visual localization estimates the absolute pose of a camera using a single image, in a previously mapped area. Obtaining the pose from a single image enables many robotics and augmented/virtual reality applications. Inspired by latest advances in deep learning, many existing approaches directly learn and regress 6 DoF pose from an input image. However, these methods do not fully utilize the underlying scene geometry for pose regression. The challenge in monocular relocalization is the minimal availability of supervised training data, which is just the corresponding 6 DoF poses of the images. In this letter, we propose to utilize these minimal available labels (i.e., poses) to learn the underlying 3D geometry of the scene and use the geometry to estimate the 6 DoF camera pose. We present a learning method that uses these pose labels and rigid alignment to learn two 3D geometric representations ( X, Y, Z coordinates ) of the scene, one in camera coordinate frame and the other in global coordinate frame. Given a single image, it estimates these two 3D scene representations, which are then aligned to estimate a pose that matches the pose label. This formulation allows for the active inclusion of additional learning constraints to minimize 3D alignment errors between the two 3D scene representations, and 2D re-projection errors between the 3D global scene representation and 2D image pixels, resulting in improved localization accuracy. During inference, our model estimates the 3D scene geometry in camera and global frames and aligns them rigidly to obtain pose in real-time. We evaluate our work on three common visual localization datasets, conduct ablation studies, and show that our method exceeds state-of-the-art regression methods' pose accuracy on all datasets. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2377-3766 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS |
Approved |
no |
|
|
Call Number |
Admin @ si @ |
Serial |
3857 |
|
Permanent link to this record |
|
|
|
|
Author |
Marçal Rusiñol; David Aldavert; Ricardo Toledo; Josep Llados |
|
|
Title |
Efficient segmentation-free keyword spotting in historical document collections |
Type |
Journal Article |
|
Year |
2015 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
48 |
Issue |
2 |
Pages |
545–555 |
|
|
Keywords |
Historical documents; Keyword spotting; Segmentation-free; Dense SIFT features; Latent semantic analysis; Product quantization |
|
|
Abstract |
In this paper we present an efficient segmentation-free word spotting method, applied in the context of historical document collections, that follows the query-by-example paradigm. We use a patch-based framework where local patches are described by a bag-of-visual-words model powered by SIFT descriptors. By projecting the patch descriptors to a topic space with the latent semantic analysis technique and compressing the descriptors with the product quantization method, we are able to efficiently index the document information both in terms of memory and time. The proposed method is evaluated using four different collections of historical documents achieving good performances on both handwritten and typewritten scenarios. The yielded performances outperform the recent state-of-the-art keyword spotting approaches. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; ADAS; 600.076; 600.077; 600.061; 601.223; 602.006; 600.055 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RAT2015a |
Serial |
2544 |
|
Permanent link to this record |