toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author David Geronimo; Antonio Lopez edit  doi
isbn  openurl
  Title Vision-based Pedestrian Protection Systems for Intelligent Vehicles Type Book Whole
  Year 2014 Publication SpringerBriefs in Computer Science Abbreviated Journal  
  Volume Issue Pages 1-114  
  Keywords Computer Vision; Driver Assistance Systems; Intelligent Vehicles; Pedestrian Detection; Vulnerable Road Users  
  Abstract Pedestrian Protection Systems (PPSs) are on-board systems aimed at detecting and tracking people in the surroundings of a vehicle in order to avoid potentially dangerous situations. These systems, together with other Advanced Driver Assistance Systems (ADAS) such as lane departure warning or adaptive cruise control, are one of the most promising ways to improve traffic safety. By the use of computer vision, cameras working either in the visible or infra-red spectra have been demonstrated as a reliable sensor to perform this task. Nevertheless, the variability of human’s appearance, not only in terms of clothing and sizes but also as a result of their dynamic shape, makes pedestrians one of the most complex classes even for computer vision. Moreover, the unstructured changing and unpredictable environment in which such on-board systems must work makes detection a difficult task to be carried out with the demanded robustness. In this brief, the state of the art in PPSs is introduced through the review of the most relevant papers of the last decade. A common computational architecture is presented as a framework to organize each method according to its main contribution. More than 300 papers are referenced, most of them addressing pedestrian detection and others corresponding to the descriptors (features), pedestrian models, and learning machines used. In addition, an overview of topics such as real-time aspects, systems benchmarking and future challenges of this research area are presented.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Briefs in Computer Vision Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (down)  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4614-7986-4 Medium  
  Area Expedition Conference  
  Notes ADAS; 600.076 Approved no  
  Call Number GeL2014 Serial 2325  
Permanent link to this record
 

 
Author Muhammad Anwer Rao edit  openurl
  Title Color for Object Detection and Action Recognition Type Book Whole
  Year 2013 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Recognizing object categories in real world images is a challenging problem in computer vision. The deformable part based framework is currently the most successful approach for object detection. Generally, HOG are used for image representation within the part-based framework. For action recognition, the bag-of-word framework has shown to provide promising results. Within the bag-of-words framework, local image patches are described by SIFT descriptor. Contrary to object detection and action recognition, combining color and shape has shown to provide the best performance for object and scene recognition.

In the first part of this thesis, we analyze the problem of person detection in still images. Standard person detection approaches rely on intensity based features for image representation while ignoring the color. Channel based descriptors is one of the most commonly used approaches in object recognition. This inspires us to evaluate incorporating color information using the channel based fusion approach for the task of person detection.

In the second part of the thesis, we investigate the problem of object detection in still images. Due to high dimensionality, channel based fusion increases the computational cost. Moreover, channel based fusion has been found to obtain inferior results for object category where one of the visual varies significantly. On the other hand, late fusion is known to provide improved results for a wide range of object categories. A consequence of late fusion strategy is the need of a pure color descriptor. Therefore, we propose to use Color attributes as an explicit color representation for object detection. Color attributes are compact and computationally efficient. Consequently color attributes are combined with traditional shape features providing excellent results for object detection task.

Finally, we focus on the problem of action detection and classification in still images. We investigate the potential of color for action classification and detection in still images. We also evaluate different fusion approaches for combining color and shape information for action recognition. Additionally, an analysis is performed to validate the contribution of color for action recognition. Our results clearly demonstrate that combining color and shape information significantly improve the performance of both action classification and detection in still images.
 
  Address Barcelona  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Antonio Lopez;Joost Van de Weijer  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (down)  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ Rao2013 Serial 2281  
Permanent link to this record
 

 
Author Javier Marin edit  openurl
  Title Pedestrian Detection Based on Local Experts Type Book Whole
  Year 2013 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract During the last decade vision-based human detection systems have started to play a key rolein multiple applications linked to driver assistance, surveillance, robot sensing and home automation.
Detecting humans is by far one of the most challenging tasks in Computer Vision.
This is mainly due to the high degree of variability in the human appearanceassociated to
the clothing, pose, shape and size. Besides, other factors such as cluttered scenarios, partial occlusions, or environmental conditions can make the detection task even harder.
Most promising methods of the state-of-the-art rely on discriminative learning paradigms which are fed with positive and negative examples. The training data is one of the most
relevant elements in order to build a robust detector as it has to cope the large variability of the target. In order to create this dataset human supervision is required. The drawback at this point is the arduous effort of annotating as well as looking for such claimed variability.
In this PhD thesis we address two recurrent problems in the literature. In the first stage,we aim to reduce the consuming task of annotating, namely, by using computer graphics.
More concretely, we develop a virtual urban scenario for later generating a pedestrian dataset.
Then, we train a detector using this dataset, and finally we assess if this detector can be successfully applied in a real scenario.
In the second stage, we focus on increasing the robustness of our pedestrian detectors
under partial occlusions. In particular, we present a novel occlusion handling approach to increase the performance of block-based holistic methods under partial occlusions. For this purpose, we make use of local experts via a RandomSubspaceMethod (RSM) to handle these cases. If the method infers a possible partial occlusion, then the RSM, based on performance statistics obtained from partially occluded data, is applied. The last objective of this thesis
is to propose a robust pedestrian detector based on an ensemble of local experts. To achieve this goal, we use the random forest paradigm, where the trees act as ensembles an their nodesare the local experts. In particular, each expert focus on performing a robust classification ofa pedestrian body patch. This approach offers computational efficiency and far less design complexity when compared to other state-of-the-artmethods, while reaching better accuracy
 
  Address Barcelona  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Antonio Lopez;Jaume Amores  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (down)  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ Mar2013 Serial 2280  
Permanent link to this record
 

 
Author David Vazquez edit   pdf
isbn  openurl
  Title Domain Adaptation of Virtual and Real Worlds for Pedestrian Detection Type Book Whole
  Year 2013 Publication PhD Thesis, Universitat de Barcelona-CVC Abbreviated Journal  
  Volume 1 Issue 1 Pages 1-105  
  Keywords Pedestrian Detection; Domain Adaptation  
  Abstract Pedestrian detection is of paramount interest for many applications, e.g. Advanced Driver Assistance Systems, Intelligent Video Surveillance and Multimedia systems. Most promising pedestrian detectors rely on appearance-based classifiers trained with annotated data. However, the required annotation step represents an intensive and subjective task for humans, what makes worth to minimize their intervention in this process by using computational tools like realistic virtual worlds. The reason to use these kind of tools relies in the fact that they allow the automatic generation of precise and rich annotations of visual information. Nevertheless, the use of this kind of data comes with the following question: can a pedestrian appearance model learnt with virtual-world data work successfully for pedestrian detection in real-world scenarios?. To answer this question, we conduct different experiments that suggest a positive answer. However, the pedestrian classifiers trained with virtual-world data can suffer the so called dataset shift problem as real-world based classifiers does. Accordingly, we have designed different domain adaptation techniques to face this problem, all of them integrated in a same framework (V-AYLA). We have explored different methods to train a domain adapted pedestrian classifiers by collecting a few pedestrian samples from the target domain (real world) and combining them with many samples of the source domain (virtual world). The extensive experiments we present show that pedestrian detectors developed within the V-AYLA framework do achieve domain adaptation. Ideally, we would like to adapt our system without any human intervention. Therefore, as a first proof of concept we also propose an unsupervised domain adaptation technique that avoids human intervention during the adaptation process. To the best of our knowledge, this Thesis work is the first demonstrating adaptation of virtual and real worlds for developing an object detector. Last but not least, we also assessed a different strategy to avoid the dataset shift that consists in collecting real-world samples and retrain with them in such a way that no bounding boxes of real-world pedestrians have to be provided. We show that the generated classifier is competitive with respect to the counterpart trained with samples collected by manually annotating pedestrian bounding boxes. The results presented on this Thesis not only end with a proposal for adapting a virtual-world pedestrian detector to the real world, but also it goes further by pointing out a new methodology that would allow the system to adapt to different situations, which we hope will provide the foundations for future research in this unexplored area.  
  Address Barcelona  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Barcelona Editor Antonio Lopez;Daniel Ponsa  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (down)  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-940530-1-6 Medium  
  Area Expedition Conference  
  Notes adas Approved yes  
  Call Number ADAS @ adas @ Vaz2013 Serial 2276  
Permanent link to this record
 

 
Author Angel Sappa; David Geronimo; Fadi Dornaika; Mohammad Rouhani; Antonio Lopez edit   pdf
doi  isbn
openurl 
  Title Moving object detection from mobile platforms using stereo data registration Type Book Chapter
  Year 2012 Publication Computational Intelligence paradigms in advanced pattern classification Abbreviated Journal  
  Volume 386 Issue Pages 25-37  
  Keywords pedestrian detection  
  Abstract This chapter describes a robust approach for detecting moving objects from on-board stereo vision systems. It relies on a feature point quaternion-based registration, which avoids common problems that appear when computationally expensive iterative-based algorithms are used on dynamic environments. The proposed approach consists of three main stages. Initially, feature points are extracted and tracked through consecutive 2D frames. Then, a RANSAC based approach is used for registering two point sets, with known correspondences in the 3D space. The computed 3D rigid displacement is used to map two consecutive 3D point clouds into the same coordinate system by means of the quaternion method. Finally, moving objects correspond to those areas with large 3D registration errors. Experimental results show the viability of the proposed approach to detect moving objects like vehicles or pedestrians in different urban scenarios.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor Marek R. Ogiela; Lakhmi C. Jain  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (down)  
  Series Volume Series Issue Edition  
  ISSN 1860-949X ISBN 978-3-642-24048-5 Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ SGD2012 Serial 2061  
Permanent link to this record
 

 
Author Angel Sappa; George A. Triantafyllid edit  isbn
openurl 
  Title Computer Graphics and Imaging Type Book Whole
  Year 2012 Publication Computer Graphics and Imaging Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address Crete, Greece  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (down)  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-0-88986-921-9 Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ Sap2012 Serial 2067  
Permanent link to this record
 

 
Author Cristhian Aguilera; M.Ramos; Angel Sappa edit   pdf
doi  isbn
openurl 
  Title Simulated Annealing: A Novel Application of Image Processing in the Wood Area Type Book Chapter
  Year 2012 Publication Simulated Annealing – Advances, Applications and Hybridizations Abbreviated Journal  
  Volume Issue Pages 91-104  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Marcos de Sales Guerra Tsuzuki  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (down)  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-953-51-0710-1 Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ ARS2012 Serial 2156  
Permanent link to this record
 

 
Author Jose Manuel Alvarez; Antonio Lopez edit  doi
isbn  openurl
  Title Photometric Invariance by Machine Learning Type Book Chapter
  Year 2012 Publication Color in Computer Vision: Fundamentals and Applications Abbreviated Journal  
  Volume 7 Issue Pages 113-134  
  Keywords road detection  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher iConcept Press Ltd Place of Publication Editor Theo Gevers, Arjan Gijsenij, Joost van de Weijer, Jan-Mark Geusebroek  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (down)  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-0-470-89084-4 Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ AlL2012 Serial 2186  
Permanent link to this record
 

 
Author David Vazquez; Antonio Lopez; Daniel Ponsa; David Geronimo edit   pdf
doi  isbn
openurl 
  Title Interactive Training of Human Detectors Type Book Chapter
  Year 2013 Publication Multiodal Interaction in Image and Video Applications Abbreviated Journal  
  Volume 48 Issue Pages 169-182  
  Keywords Pedestrian Detection; Virtual World; AdaBoost; Domain Adaptation  
  Abstract Image based human detection remains as a challenging problem. Most promising detectors rely on classifiers trained with labelled samples. However, labelling is a manual labor intensive step. To overcome this problem we propose to collect images of pedestrians from a virtual city, i.e., with automatic labels, and train a pedestrian detector with them, which works fine when such virtual-world data are similar to testing one, i.e., real-world pedestrians in urban areas. When testing data is acquired in different conditions than training one, e.g., human detection in personal photo albums, dataset shift appears. In previous work, we cast this problem as one of domain adaptation and solve it with an active learning procedure. In this work, we focus on the same problem but evaluating a different set of faster to compute features, i.e., Haar, EOH and their combination. In particular, we train a classifier with virtual-world data, using such features and Real AdaBoost as learning machine. This classifier is applied to real-world training images. Then, a human oracle interactively corrects the wrong detections, i.e., few miss detections are manually annotated and some false ones are pointed out too. A low amount of manual annotation is fixed as restriction. Real- and virtual-world difficult samples are combined within what we call cool world and we retrain the classifier with this data. Our experiments show that this adapted classifier is equivalent to the one trained with only real-world data but requiring 90% less manual annotations.  
  Address Springer Heidelberg New York Dordrecht London  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (down)  
  Series Volume Series Issue Edition  
  ISSN 1868-4394 ISBN 978-3-642-35931-6 Medium  
  Area Expedition Conference  
  Notes ADAS; 600.057; 600.054; 605.203 Approved no  
  Call Number VLP2013; ADAS @ adas @ vlp2013 Serial 2193  
Permanent link to this record
 

 
Author Angel Sappa; Jordi Vitria edit  doi
isbn  openurl
  Title Multimodal Interaction in Image and Video Applications Type Book Whole
  Year 2013 Publication Multimodal Interaction in Image and Video Applications Abbreviated Journal  
  Volume 48 Issue Pages  
  Keywords  
  Abstract Book Series Intelligent Systems Reference Library  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (down)  
  Series Volume Series Issue Edition  
  ISSN 1868-4394 ISBN 978-3-642-35931-6 Medium  
  Area Expedition Conference  
  Notes ADAS; OR;MV Approved no  
  Call Number Admin @ si @ SaV2013 Serial 2199  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: