toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Yu Jie; Jaume Amores; N. Sebe; Petia Radeva; Tian Qi edit  openurl
  Title Distance Learning for Similarity Estimation Type Journal
  Year 2008 Publication IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.30(3):451–462 Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS;MILAB Approved no  
  Call Number ADAS @ adas @ JAS2008 Serial 961  
Permanent link to this record
 

 
Author Angel Sappa; Fadi Dornaika; Daniel Ponsa; David Geronimo; Antonio Lopez edit   pdf
url  openurl
  Title An Efficient Approach to Onboard Stereo Vision System Pose Estimation Type Journal Article
  Year 2008 Publication IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS  
  Volume 9 Issue 3 Pages 476–490  
  Keywords Camera extrinsic parameter estimation, ground plane estimation, onboard stereo vision system  
  Abstract This paper presents an efficient technique for estimating the pose of an onboard stereo vision system relative to the environment’s dominant surface area, which is supposed to be the road surface. Unlike previous approaches, it can be used either for urban or highway scenarios since it is not based on a specific visual traffic feature extraction but on 3-D raw data points. The whole process is performed in the Euclidean space and consists of two stages. Initially, a compact 2-D representation of the original 3-D data points is computed. Then, a RANdom SAmple Consensus (RANSAC) based least-squares approach is used to fit a plane to the road. Fast RANSAC fitting is obtained by selecting points according to a probability function that takes into account the density of points at a given depth. Finally, stereo camera height and pitch angle are computed related to the fitted road plane. The proposed technique is intended to be used in driverassistance systems for applications such as vehicle or pedestrian detection. Experimental results on urban environments, which are the most challenging scenarios (i.e., flat/uphill/downhill driving, speed bumps, and car’s accelerations), are presented. These results are validated with manually annotated ground truth. Additionally, comparisons with previous works are presented to show the improvements in the central processing unit processing time, as well as in the accuracy of the obtained results.  
  Address  
  Corporate Author Thesis (up)  
  Publisher IEEE Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ SDP2008 Serial 1000  
Permanent link to this record
 

 
Author Fadi Dornaika; Angel Sappa edit  openurl
  Title Evaluation of an Appearance-based 3D Face Tracker using Dense 3D Data Type Journal
  Year 2008 Publication Machine Vision and Applications Abbreviated Journal  
  Volume 19 Issue 5-6 Pages 427–441  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ DoS2008b Serial 1018  
Permanent link to this record
 

 
Author Hugo Berti; Angel Sappa; Osvaldo Agamennoni edit  openurl
  Title Improved Dynamic Window Approach by Using Lyapunov Stability Criteria Type Journal
  Year 2008 Publication Latin American Applied Research Abbreviated Journal  
  Volume 38 Issue 4 Pages 289–298  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ BSA2008 Serial 1056  
Permanent link to this record
 

 
Author Jiaolong Xu; Sebastian Ramos; David Vazquez; Antonio Lopez edit   pdf
doi  openurl
  Title Domain Adaptation of Deformable Part-Based Models Type Journal Article
  Year 2014 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 36 Issue 12 Pages 2367-2380  
  Keywords Domain Adaptation; Pedestrian Detection  
  Abstract The accuracy of object classifiers can significantly drop when the training data (source domain) and the application scenario (target domain) have inherent differences. Therefore, adapting the classifiers to the scenario in which they must operate is of paramount importance. We present novel domain adaptation (DA) methods for object detection. As proof of concept, we focus on adapting the state-of-the-art deformable part-based model (DPM) for pedestrian detection. We introduce an adaptive structural SVM (A-SSVM) that adapts a pre-learned classifier between different domains. By taking into account the inherent structure in feature space (e.g., the parts in a DPM), we propose a structure-aware A-SSVM (SA-SSVM). Neither A-SSVM nor SA-SSVM needs to revisit the source-domain training data to perform the adaptation. Rather, a low number of target-domain training examples (e.g., pedestrians) are used. To address the scenario where there are no target-domain annotated samples, we propose a self-adaptive DPM based on a self-paced learning (SPL) strategy and a Gaussian Process Regression (GPR). Two types of adaptation tasks are assessed: from both synthetic pedestrians and general persons (PASCAL VOC) to pedestrians imaged from an on-board camera. Results show that our proposals avoid accuracy drops as high as 15 points when comparing adapted and non-adapted detectors.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0162-8828 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.057; 600.054; 601.217; 600.076 Approved no  
  Call Number ADAS @ adas @ XRV2014b Serial 2436  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: