|   | 
Details
   web
Records Links
Author Javier Vazquez; J. Kevin O'Regan; Maria Vanrell; Graham D. Finlayson edit  url
doi  openurl
Title A new spectrally sharpened basis to predict colour naming, unique hues, and hue cancellation Type Journal Article
Year 2012 Publication Journal of Vision Abbreviated Journal VSS  
Volume 12 Issue 6 (7) Pages 1-14  
Keywords  
Abstract When light is reflected off a surface, there is a linear relation between the three human photoreceptor responses to the incoming light and the three photoreceptor responses to the reflected light. Different colored surfaces have different linear relations. Recently, Philipona and O'Regan (2006) showed that when this relation is singular in a mathematical sense, then the surface is perceived as having a highly nameable color. Furthermore, white light reflected by that surface is perceived as corresponding precisely to one of the four psychophysically measured unique hues. However, Philipona and O'Regan's approach seems unrelated to classical psychophysical models of color constancy. In this paper we make this link. We begin by transforming cone sensors to spectrally sharpened counterparts. In sharp color space, illumination change can be modeled by simple von Kries type scalings of response values within each of the spectrally sharpened response channels. In this space, Philipona and O'Regan's linear relation is captured by a simple Land-type color designator defined by dividing reflected light by incident light. This link between Philipona and O'Regan's theory and Land's notion of color designator gives the model biological plausibility. We then show that Philipona and O'Regan's singular surfaces are surfaces which are very close to activating only one or only two of such newly defined spectrally sharpened sensors, instead of the usual three. Closeness to zero is quantified in a new simplified measure of singularity which is also shown to relate to the chromaticness of colors. As in Philipona and O'Regan's original work, our new theory accounts for a large variety of psychophysical color data.  
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN (up) Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number Admin @ si @ VOV2012 Serial 1998  
Permanent link to this record
 

 
Author Javier Vazquez; Maria Vanrell; Ramon Baldrich; Francesc Tous edit  url
doi  openurl
Title Color Constancy by Category Correlation Type Journal Article
Year 2012 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
Volume 21 Issue 4 Pages 1997-2007  
Keywords  
Abstract Finding color representations which are stable to illuminant changes is still an open problem in computer vision. Until now most approaches have been based on physical constraints or statistical assumptions derived from the scene, while very little attention has been paid to the effects that selected illuminants have
on the final color image representation. The novelty of this work is to propose
perceptual constraints that are computed on the corrected images. We define the
category hypothesis, which weights the set of feasible illuminants according to their ability to map the corrected image onto specific colors. Here we choose these colors as the universal color categories related to basic linguistic terms which have been psychophysically measured. These color categories encode natural color statistics, and their relevance across different cultures is indicated by the fact that they have received a common color name. From this category hypothesis we propose a fast implementation that allows the sampling of a large set of illuminants. Experiments prove that our method rivals current state-of-art performance without the need for training algorithmic parameters. Additionally, the method can be used as a framework to insert top-down information from other sources, thus opening further research directions in solving for color constancy.
 
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN 1057-7149 ISBN (up) Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number Admin @ si @ VVB2012 Serial 1999  
Permanent link to this record
 

 
Author Graham D. Finlayson; Javier Vazquez; Sabine Süsstrunk; Maria Vanrell edit   pdf
url  doi
openurl 
Title Spectral sharpening by spherical sampling Type Journal Article
Year 2012 Publication Journal of the Optical Society of America A Abbreviated Journal JOSA A  
Volume 29 Issue 7 Pages 1199-1210  
Keywords  
Abstract There are many works in color that assume illumination change can be modeled by multiplying sensor responses by individual scaling factors. The early research in this area is sometimes grouped under the heading “von Kries adaptation”: the scaling factors are applied to the cone responses. In more recent studies, both in psychophysics and in computational analysis, it has been proposed that scaling factors should be applied to linear combinations of the cones that have narrower support: they should be applied to the so-called “sharp sensors.” In this paper, we generalize the computational approach to spectral sharpening in three important ways. First, we introduce spherical sampling as a tool that allows us to enumerate in a principled way all linear combinations of the cones. This allows us to, second, find the optimal sharp sensors that minimize a variety of error measures including CIE Delta E (previous work on spectral sharpening minimized RMS) and color ratio stability. Lastly, we extend the spherical sampling paradigm to the multispectral case. Here the objective is to model the interaction of light and surface in terms of color signal spectra. Spherical sampling is shown to improve on the state of the art.  
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN 1084-7529 ISBN (up) Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number Admin @ si @ FVS2012 Serial 2000  
Permanent link to this record
 

 
Author Joost Van de Weijer; Robert Benavente; Maria Vanrell; Cordelia Schmid; Ramon Baldrich; Jacob Verbeek; Diane Larlus edit   pdf
openurl 
Title Color Naming Type Book Chapter
Year 2012 Publication Color in Computer Vision: Fundamentals and Applications Abbreviated Journal  
Volume Issue 17 Pages 287-317  
Keywords  
Abstract  
Address  
Corporate Author Thesis  
Publisher John Wiley & Sons, Ltd. Place of Publication Editor Theo Gevers;Arjan Gijsenij;Joost Van de Weijer;Jan-Mark Geusebroek  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN (up) Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number Admin @ si @ WBV2012 Serial 2063  
Permanent link to this record
 

 
Author Shida Beigpour; Marc Serra; Joost Van de Weijer; Robert Benavente; Maria Vanrell; Olivier Penacchio; Dimitris Samaras edit   pdf
doi  openurl
Title Intrinsic Image Evaluation On Synthetic Complex Scenes Type Conference Article
Year 2013 Publication 20th IEEE International Conference on Image Processing Abbreviated Journal  
Volume Issue Pages 285 - 289  
Keywords  
Abstract Scene decomposition into its illuminant, shading, and reflectance intrinsic images is an essential step for scene understanding. Collecting intrinsic image groundtruth data is a laborious task. The assumptions on which the ground-truth
procedures are based limit their application to simple scenes with a single object taken in the absence of indirect lighting and interreflections. We investigate synthetic data for intrinsic image research since the extraction of ground truth is straightforward, and it allows for scenes in more realistic situations (e.g, multiple illuminants and interreflections). With this dataset we aim to motivate researchers to further explore intrinsic image decomposition in complex scenes.
 
Address Melbourne; Australia; September 2013  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN (up) Medium  
Area Expedition Conference ICIP  
Notes CIC; 600.048; 600.052; 600.051 Approved no  
Call Number Admin @ si @ BSW2013 Serial 2264  
Permanent link to this record
 

 
Author Susana Alvarez; Maria Vanrell edit   pdf
url  doi
openurl 
Title Texton theory revisited: a bag-of-words approach to combine textons Type Journal Article
Year 2012 Publication Pattern Recognition Abbreviated Journal PR  
Volume 45 Issue 12 Pages 4312-4325  
Keywords  
Abstract The aim of this paper is to revisit an old theory of texture perception and
update its computational implementation by extending it to colour. With this in mind we try to capture the optimality of perceptual systems. This is achieved in the proposed approach by sharing well-known early stages of the visual processes and extracting low-dimensional features that perfectly encode adequate properties for a large variety of textures without needing further learning stages. We propose several descriptors in a bag-of-words framework that are derived from different quantisation models on to the feature spaces. Our perceptual features are directly given by the shape and colour attributes of image blobs, which are the textons. In this way we avoid learning visual words and directly build the vocabularies on these lowdimensionaltexton spaces. Main differences between proposed descriptors rely on how co-occurrence of blob attributes is represented in the vocabularies. Our approach overcomes current state-of-art in colour texture description which is proved in several experiments on large texture datasets.
 
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN 0031-3203 ISBN (up) Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number Admin @ si @ AlV2012a Serial 2130  
Permanent link to this record
 

 
Author Javier Vazquez; Robert Benavente; Maria Vanrell edit   pdf
url  openurl
Title Naming constraints constancy Type Conference Article
Year 2012 Publication 2nd Joint AVA / BMVA Meeting on Biological and Machine Vision Abbreviated Journal  
Volume Issue Pages  
Keywords  
Abstract Different studies have shown that languages from industrialized cultures
share a set of 11 basic colour terms: red, green, blue, yellow, pink, purple, brown, orange, black, white, and grey (Berlin & Kay, 1969, Basic Color Terms, University of California Press)( Kay & Regier, 2003, PNAS, 100, 9085-9089). Some of these studies have also reported the best representatives or focal values of each colour (Boynton and Olson, 1990, Vision Res. 30,1311–1317), (Sturges and Whitfield, 1995, CRA, 20:6, 364–376). Some further studies have provided us with fuzzy datasets for color naming by asking human observers to rate colours in terms of membership values (Benavente -et al-, 2006, CRA. 31:1, 48–56,). Recently, a computational model based on these human ratings has been developed (Benavente -et al-, 2008, JOSA-A, 25:10, 2582-2593). This computational model follows a fuzzy approach to assign a colour name to a particular RGB value. For example, a pixel with a value (255,0,0) will be named 'red' with membership 1, while a cyan pixel with a RGB value of (0, 200, 200) will be considered to be 0.5 green and 0.5 blue. In this work, we show how this colour naming paradigm can be applied to different computer vision tasks. In particular, we report results in colour constancy (Vazquez-Corral -et al-, 2012, IEEE TIP, in press) showing that the classical constraints on either illumination or surface reflectance can be substituted by
the statistical properties encoded in the colour names. [Supported by projects TIN2010-21771-C02-1, CSD2007-00018].
 
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN (up) Medium  
Area Expedition Conference AV A  
Notes CIC Approved no  
Call Number Admin @ si @ VBV2012 Serial 2131  
Permanent link to this record
 

 
Author Jordi Roca; C. Alejandro Parraga; Maria Vanrell edit   pdf
url  openurl
Title Predicting categorical colour perception in successive colour constancy Type Abstract
Year 2012 Publication Perception Abbreviated Journal PER  
Volume 41 Issue Pages 138  
Keywords  
Abstract Colour constancy is a perceptual mechanism that seeks to keep the colour of objects relatively stable under an illumination shift. Experiments haveshown that its effects depend on the number of colours present in the scene. We
studied categorical colour changes under different adaptation states, in particular, whether the colour categories seen under a chromatically neutral illuminant are the same after a shift in the chromaticity of the illumination. To do this, we developed the chromatic setting paradigm (2011 Journal of Vision11 349), which is as an extension of achromatic setting to colour categories. The paradigm exploits the ability of subjects to reliably reproduce the most representative examples of each category, adjusting multiple test patches embedded in a coloured Mondrian. Our experiments were run on a CRT monitor (inside a dark room) under various simulated illuminants and restricting the number of colours of the Mondrian background to three, thus weakening the adaptation effect. Our results show a change in the colour categories present before (under neutral illumination) and after adaptation (under coloured illuminants) with a tendency for adapted colours to be less saturated than before adaptation. This behaviour was predicted by a simple
affine matrix model, adjusted to the chromatic setting results.
 
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN 0301-0066 ISBN (up) Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number Admin @ si @ RPV2012 Serial 2188  
Permanent link to this record
 

 
Author Marc Serra; Olivier Penacchio; Robert Benavente; Maria Vanrell; Dimitris Samaras edit   pdf
doi  openurl
Title The Photometry of Intrinsic Images Type Conference Article
Year 2014 Publication 27th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
Volume Issue Pages 1494-1501  
Keywords  
Abstract Intrinsic characterization of scenes is often the best way to overcome the illumination variability artifacts that complicate most computer vision problems, from 3D reconstruction to object or material recognition. This paper examines the deficiency of existing intrinsic image models to accurately account for the effects of illuminant color and sensor characteristics in the estimation of intrinsic images and presents a generic framework which incorporates insights from color constancy research to the intrinsic image decomposition problem. The proposed mathematical formulation includes information about the color of the illuminant and the effects of the camera sensors, both of which modify the observed color of the reflectance of the objects in the scene during the acquisition process. By modeling these effects, we get a “truly intrinsic” reflectance image, which we call absolute reflectance, which is invariant to changes of illuminant or camera sensors. This model allows us to represent a wide range of intrinsic image decompositions depending on the specific assumptions on the geometric properties of the scene configuration and the spectral properties of the light source and the acquisition system, thus unifying previous models in a single general framework. We demonstrate that even partial information about sensors improves significantly the estimated reflectance images, thus making our method applicable for a wide range of sensors. We validate our general intrinsic image framework experimentally with both synthetic data and natural images.  
Address Columbus; Ohio; USA; June 2014  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN (up) Medium  
Area Expedition Conference CVPR  
Notes CIC; 600.052; 600.051; 600.074 Approved no  
Call Number Admin @ si @ SPB2014 Serial 2506  
Permanent link to this record
 

 
Author Ivet Rafegas; Javier Vazquez; Robert Benavente; Maria Vanrell; Susana Alvarez edit  url
openurl 
Title Enhancing spatio-chromatic representation with more-than-three color coding for image description Type Journal Article
Year 2017 Publication Journal of the Optical Society of America A Abbreviated Journal JOSA A  
Volume 34 Issue 5 Pages 827-837  
Keywords  
Abstract Extraction of spatio-chromatic features from color images is usually performed independently on each color channel. Usual 3D color spaces, such as RGB, present a high inter-channel correlation for natural images. This correlation can be reduced using color-opponent representations, but the spatial structure of regions with small color differences is not fully captured in two generic Red-Green and Blue-Yellow channels. To overcome these problems, we propose a new color coding that is adapted to the specific content of each image. Our proposal is based on two steps: (a) setting the number of channels to the number of distinctive colors we find in each image (avoiding the problem of channel correlation), and (b) building a channel representation that maximizes contrast differences within each color channel (avoiding the problem of low local contrast). We call this approach more-than-three color coding (MTT) to enhance the fact that the number of channels is adapted to the image content. The higher color complexity an image has, the more channels can be used to represent it. Here we select distinctive colors as the most predominant in the image, which we call color pivots, and we build the new color coding using these color pivots as a basis. To evaluate the proposed approach we measure its efficiency in an image categorization task. We show how a generic descriptor improves its performance at the description level when applied on the MTT coding.  
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN (up) Medium  
Area Expedition Conference  
Notes CIC; 600.087 Approved no  
Call Number Admin @ si @ RVB2017 Serial 2892  
Permanent link to this record
 

 
Author Ivet Rafegas; Maria Vanrell edit   pdf
openurl 
Title Color spaces emerging from deep convolutional networks Type Conference Article
Year 2016 Publication 24th Color and Imaging Conference Abbreviated Journal  
Volume Issue Pages 225-230  
Keywords  
Abstract Award for the best interactive session
Defining color spaces that provide a good encoding of spatio-chromatic properties of color surfaces is an open problem in color science [8, 22]. Related to this, in computer vision the fusion of color with local image features has been studied and evaluated [16]. In human vision research, the cells which are selective to specific color hues along the visual pathway are also a focus of attention [7, 14]. In line with these research aims, in this paper we study how color is encoded in a deep Convolutional Neural Network (CNN) that has been trained on more than one million natural images for object recognition. These convolutional nets achieve impressive performance in computer vision, and rival the representations in human brain. In this paper we explore how color is represented in a CNN architecture that can give some intuition about efficient spatio-chromatic representations. In convolutional layers the activation of a neuron is related to a spatial filter, that combines spatio-chromatic representations. We use an inverted version of it to explore the properties. Using a series of unsupervised methods we classify different type of neurons depending on the color axes they define and we propose an index of color-selectivity of a neuron. We estimate the main color axes that emerge from this trained net and we prove that colorselectivity of neurons decreases from early to deeper layers.
 
Address San Diego; USA; November 2016  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN (up) Medium  
Area Expedition Conference CIC  
Notes CIC Approved no  
Call Number Admin @ si @ RaV2016a Serial 2894  
Permanent link to this record
 

 
Author Ivet Rafegas; Maria Vanrell edit  openurl
Title Colour Visual Coding in trained Deep Neural Networks Type Abstract
Year 2016 Publication European Conference on Visual Perception Abbreviated Journal  
Volume Issue Pages  
Keywords  
Abstract  
Address Barcelona; Spain; August 2016  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN (up) Medium  
Area Expedition Conference ECVP  
Notes CIC Approved no  
Call Number Admin @ si @ RaV2016b Serial 2895  
Permanent link to this record
 

 
Author Ivet Rafegas; Maria Vanrell edit   pdf
openurl 
Title Color representation in CNNs: parallelisms with biological vision Type Conference Article
Year 2017 Publication ICCV Workshop on Mutual Benefits ofr Cognitive and Computer Vision Abbreviated Journal  
Volume Issue Pages  
Keywords  
Abstract Convolutional Neural Networks (CNNs) trained for object recognition tasks present representational capabilities approaching to primate visual systems [1]. This provides a computational framework to explore how image features
are efficiently represented. Here, we dissect a trained CNN
[2] to study how color is represented. We use a classical methodology used in physiology that is measuring index of selectivity of individual neurons to specific features. We use ImageNet Dataset [20] images and synthetic versions
of them to quantify color tuning properties of artificial neurons to provide a classification of the network population.
We conclude three main levels of color representation showing some parallelisms with biological visual systems: (a) a decomposition in a circular hue space to represent single color regions with a wider hue sampling beyond the first
layer (V2), (b) the emergence of opponent low-dimensional spaces in early stages to represent color edges (V1); and (c) a strong entanglement between color and shape patterns representing object-parts (e.g. wheel of a car), objectshapes (e.g. faces) or object-surrounds configurations (e.g. blue sky surrounding an object) in deeper layers (V4 or IT).
 
Address Venice; Italy; October 2017  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN (up) Medium  
Area Expedition Conference ICCV-MBCC  
Notes CIC; 600.087; 600.051 Approved no  
Call Number Admin @ si @ RaV2017 Serial 2984  
Permanent link to this record
 

 
Author Ivet Rafegas; Maria Vanrell edit   pdf
url  doi
openurl 
Title Color encoding in biologically-inspired convolutional neural networks Type Journal Article
Year 2018 Publication Vision Research Abbreviated Journal VR  
Volume 151 Issue Pages 7-17  
Keywords Color coding; Computer vision; Deep learning; Convolutional neural networks  
Abstract Convolutional Neural Networks have been proposed as suitable frameworks to model biological vision. Some of these artificial networks showed representational properties that rival primate performances in object recognition. In this paper we explore how color is encoded in a trained artificial network. It is performed by estimating a color selectivity index for each neuron, which allows us to describe the neuron activity to a color input stimuli. The index allows us to classify whether they are color selective or not and if they are of a single or double color. We have determined that all five convolutional layers of the network have a large number of color selective neurons. Color opponency clearly emerges in the first layer, presenting 4 main axes (Black-White, Red-Cyan, Blue-Yellow and Magenta-Green), but this is reduced and rotated as we go deeper into the network. In layer 2 we find a denser hue sampling of color neurons and opponency is reduced almost to one new main axis, the Bluish-Orangish coinciding with the dataset bias. In layers 3, 4 and 5 color neurons are similar amongst themselves, presenting different type of neurons that detect specific colored objects (e.g., orangish faces), specific surrounds (e.g., blue sky) or specific colored or contrasted object-surround configurations (e.g. blue blob in a green surround). Overall, our work concludes that color and shape representation are successively entangled through all the layers of the studied network, revealing certain parallelisms with the reported evidences in primate brains that can provide useful insight into intermediate hierarchical spatio-chromatic representations.  
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN (up) Medium  
Area Expedition Conference  
Notes CIC; 600.051; 600.087 Approved no  
Call Number Admin @ si @RaV2018 Serial 3114  
Permanent link to this record