toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links (up)
Author Carles Sanchez; Oriol Ramos Terrades; Patricia Marquez; Enric Marti; J.Roncaries; Debora Gil edit  doi
openurl 
  Title Automatic evaluation of practices in Moodle for Self Learning in Engineering Type Journal
  Year 2015 Publication Journal of Technology and Science Education Abbreviated Journal JOTSE  
  Volume 5 Issue 2 Pages 97-106  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; DAG; 600.075; 600.077 Approved no  
  Call Number Admin @ si @ SRM2015 Serial 2610  
Permanent link to this record
 

 
Author Enric Marti; J.Roncaries; Debora Gil; Aura Hernandez-Sabate; Antoni Gurgui; Ferran Poveda edit  doi
openurl 
  Title PBL On Line: A proposal for the organization, part-time monitoring and assessment of PBL group activities Type Journal
  Year 2015 Publication Journal of Technology and Science Education Abbreviated Journal JOTSE  
  Volume 5 Issue 2 Pages 87-96  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; ADAS; 600.076; 600.075 Approved no  
  Call Number Admin @ si @ MRG2015 Serial 2608  
Permanent link to this record
 

 
Author Saad Minhas; Zeba Khanam; Shoaib Ehsan; Klaus McDonald Maier; Aura Hernandez-Sabate edit  doi
openurl 
  Title Weather Classification by Utilizing Synthetic Data Type Journal Article
  Year 2022 Publication Sensors Abbreviated Journal SENS  
  Volume 22 Issue 9 Pages 3193  
  Keywords Weather classification; synthetic data; dataset; autonomous car; computer vision; advanced driver assistance systems; deep learning; intelligent transportation systems  
  Abstract Weather prediction from real-world images can be termed a complex task when targeting classification using neural networks. Moreover, the number of images throughout the available datasets can contain a huge amount of variance when comparing locations with the weather those images are representing. In this article, the capabilities of a custom built driver simulator are explored specifically to simulate a wide range of weather conditions. Moreover, the performance of a new synthetic dataset generated by the above simulator is also assessed. The results indicate that the use of synthetic datasets in conjunction with real-world datasets can increase the training efficiency of the CNNs by as much as 74%. The article paves a way forward to tackle the persistent problem of bias in vision-based datasets.  
  Address 21 April 2022  
  Corporate Author Thesis  
  Publisher MDPI Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.139; 600.159; 600.166; 600.145; Approved no  
  Call Number Admin @ si @ MKE2022 Serial 3761  
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Lluis Albarracin; F. Javier Sanchez edit  doi
openurl 
  Title Graph-Based Problem Explorer: A Software Tool to Support Algorithm Design Learning While Solving the Salesperson Problem Type Journal
  Year 2020 Publication Mathematics Abbreviated Journal MATH  
  Volume 20 Issue 8(9) Pages 1595  
  Keywords STEM education; Project-based learning; Coding; software tool  
  Abstract In this article, we present a sequence of activities in the form of a project in order to promote
learning on design and analysis of algorithms. The project is based on the resolution of a real problem, the salesperson problem, and it is theoretically grounded on the fundamentals of mathematical modelling. In order to support the students’ work, a multimedia tool, called Graph-based Problem Explorer (GbPExplorer), has been designed and refined to promote the development of computer literacy in engineering and science university students. This tool incorporates several modules to allow coding different algorithmic techniques solving the salesman problem. Based on an educational design research along five years, we observe that working with GbPExplorer during the project provides students with the possibility of representing the situation to be studied in the form of graphs and analyze them from a computational point of view.
 
  Address September 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; ISE Approved no  
  Call Number Admin @ si @ Serial 3722  
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Jose Elias Yauri; Pau Folch; Miquel Angel Piera; Debora Gil edit  doi
openurl 
  Title Recognition of the Mental Workloads of Pilots in the Cockpit Using EEG Signals Type Journal Article
  Year 2022 Publication Applied Sciences Abbreviated Journal APPLSCI  
  Volume 12 Issue 5 Pages 2298  
  Keywords Cognitive states; Mental workload; EEG analysis; Neural networks; Multimodal data fusion  
  Abstract The commercial flightdeck is a naturally multi-tasking work environment, one in which interruptions are frequent come in various forms, contributing in many cases to aviation incident reports. Automatic characterization of pilots’ workloads is essential to preventing these kind of incidents. In addition, minimizing the physiological sensor network as much as possible remains both a challenge and a requirement. Electroencephalogram (EEG) signals have shown high correlations with specific cognitive and mental states, such as workload. However, there is not enough evidence in the literature to validate how well models generalize in cases of new subjects performing tasks with workloads similar to the ones included during the model’s training. In this paper, we propose a convolutional neural network to classify EEG features across different mental workloads in a continuous performance task test that partly measures working memory and working memory capacity. Our model is valid at the general population level and it is able to transfer task learning to pilot mental workload recognition in a simulated operational environment.  
  Address February 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; ADAS; 600.139; 600.145; 600.118 Approved no  
  Call Number Admin @ si @ HYF2022 Serial 3720  
Permanent link to this record
 

 
Author Guillermo Torres; Sonia Baeza; Carles Sanchez; Ignasi Guasch; Antoni Rosell; Debora Gil edit  doi
openurl 
  Title An Intelligent Radiomic Approach for Lung Cancer Screening Type Journal Article
  Year 2022 Publication Applied Sciences Abbreviated Journal APPLSCI  
  Volume 12 Issue 3 Pages 1568  
  Keywords Lung cancer; Early diagnosis; Screening; Neural networks; Image embedding; Architecture optimization  
  Abstract The efficiency of lung cancer screening for reducing mortality is hindered by the high rate of false positives. Artificial intelligence applied to radiomics could help to early discard benign cases from the analysis of CT scans. The available amount of data and the fact that benign cases are a minority, constitutes a main challenge for the successful use of state of the art methods (like deep learning), which can be biased, over-fitted and lack of clinical reproducibility. We present an hybrid approach combining the potential of radiomic features to characterize nodules in CT scans and the generalization of the feed forward networks. In order to obtain maximal reproducibility with minimal training data, we propose an embedding of nodules based on the statistical significance of radiomic features for malignancy detection. This representation space of lesions is the input to a feed
forward network, which architecture and hyperparameters are optimized using own-defined metrics of the diagnostic power of the whole system. Results of the best model on an independent set of patients achieve 100% of sensitivity and 83% of specificity (AUC = 0.94) for malignancy detection.
 
  Address Jan 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.139; 600.145 Approved no  
  Call Number Admin @ si @ TBS2022 Serial 3699  
Permanent link to this record
 

 
Author Jose Elias Yauri; M. Lagos; H. Vega-Huerta; P. de-la-Cruz; G.L.E Maquen-Niño; E. Condor-Tinoco edit  doi
openurl 
  Title Detection of Epileptic Seizures Based-on Channel Fusion and Transformer Network in EEG Recordings Type Journal Article
  Year 2023 Publication International Journal of Advanced Computer Science and Applications Abbreviated Journal IJACSA  
  Volume 14 Issue 5 Pages 1067-1074  
  Keywords Epilepsy; epilepsy detection; EEG; EEG channel fusion; convolutional neural network; self-attention  
  Abstract According to the World Health Organization, epilepsy affects more than 50 million people in the world, and specifically, 80% of them live in developing countries. Therefore, epilepsy has become among the major public issue for many governments and deserves to be engaged. Epilepsy is characterized by uncontrollable seizures in the subject due to a sudden abnormal functionality of the brain. Recurrence of epilepsy attacks change people’s lives and interferes with their daily activities. Although epilepsy has no cure, it could be mitigated with an appropriated diagnosis and medication. Usually, epilepsy diagnosis is based on the analysis of an electroencephalogram (EEG) of the patient. However, the process of searching for seizure patterns in a multichannel EEG recording is a visual demanding and time consuming task, even for experienced neurologists. Despite the recent progress in automatic recognition of epilepsy, the multichannel nature of EEG recordings still challenges current methods. In this work, a new method to detect epilepsy in multichannel EEG recordings is proposed. First, the method uses convolutions to perform channel fusion, and next, a self-attention network extracts temporal features to classify between interictal and ictal epilepsy states. The method was validated in the public CHB-MIT dataset using the k-fold cross-validation and achieved 99.74% of specificity and 99.15% of sensitivity, surpassing current approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number Admin @ si @ Serial 3856  
Permanent link to this record
 

 
Author Sonia Baeza; Debora Gil; I.Garcia Olive; M.Salcedo; J.Deportos; Carles Sanchez; Guillermo Torres; G.Moragas; Antoni Rosell edit  doi
openurl 
  Title A novel intelligent radiomic analysis of perfusion SPECT/CT images to optimize pulmonary embolism diagnosis in COVID-19 patients Type Journal Article
  Year 2022 Publication EJNMMI Physics Abbreviated Journal EJNMMI-PHYS  
  Volume 9 Issue 1, Article 84 Pages 1-17  
  Keywords  
  Abstract Background: COVID-19 infection, especially in cases with pneumonia, is associated with a high rate of pulmonary embolism (PE). In patients with contraindications for CT pulmonary angiography (CTPA) or non-diagnostic CTPA, perfusion single-photon emission computed tomography/computed tomography (Q-SPECT/CT) is a diagnostic alternative. The goal of this study is to develop a radiomic diagnostic system to detect PE based only on the analysis of Q-SPECT/CT scans.
Methods: This radiomic diagnostic system is based on a local analysis of Q-SPECT/CT volumes that includes both CT and Q-SPECT values for each volume point. We present a combined approach that uses radiomic features extracted from each scan as input into a fully connected classifcation neural network that optimizes a weighted crossentropy loss trained to discriminate between three diferent types of image patterns (pixel sample level): healthy lungs (control group), PE and pneumonia. Four types of models using diferent confguration of parameters were tested.
Results: The proposed radiomic diagnostic system was trained on 20 patients (4,927 sets of samples of three types of image patterns) and validated in a group of 39 patients (4,410 sets of samples of three types of image patterns). In the training group, COVID-19 infection corresponded to 45% of the cases and 51.28% in the test group. In the test group, the best model for determining diferent types of image patterns with PE presented a sensitivity, specifcity, positive predictive value and negative predictive value of 75.1%, 98.2%, 88.9% and 95.4%, respectively. The best model for detecting
pneumonia presented a sensitivity, specifcity, positive predictive value and negative predictive value of 94.1%, 93.6%, 85.2% and 97.6%, respectively. The area under the curve (AUC) was 0.92 for PE and 0.91 for pneumonia. When the results obtained at the pixel sample level are aggregated into regions of interest, the sensitivity of the PE increases to 85%, and all metrics improve for pneumonia.
Conclusion: This radiomic diagnostic system was able to identify the diferent lung imaging patterns and is a frst step toward a comprehensive intelligent radiomic system to optimize the diagnosis of PE by Q-SPECT/CT.
 
  Address 5 dec 2022  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number Admin @ si @ BGG2022 Serial 3759  
Permanent link to this record
 

 
Author Marta Diez-Ferrer; Debora Gil; Cristian Tebe; Carles Sanchez edit   pdf
doi  openurl
  Title Positive Airway Pressure to Enhance Computed Tomography Imaging for Airway Segmentation for Virtual Bronchoscopic Navigation Type Journal Article
  Year 2018 Publication Respiration Abbreviated Journal RES  
  Volume 96 Issue 6 Pages 525-534  
  Keywords Multidetector computed tomography; Bronchoscopy; Continuous positive airway pressure; Image enhancement; Virtual bronchoscopic navigation  
  Abstract Abstract
RATIONALE:
Virtual bronchoscopic navigation (VBN) guidance to peripheral pulmonary lesions is often limited by insufficient segmentation of the peripheral airways.

OBJECTIVES:
To test the effect of applying positive airway pressure (PAP) during CT acquisition to improve segmentation, particularly at end-expiration.

METHODS:
CT acquisitions in inspiration and expiration with 4 PAP protocols were recorded prospectively and compared to baseline inspiratory acquisitions in 20 patients. The 4 protocols explored differences between devices (flow vs. turbine), exposures (within seconds vs. 15-min) and pressure levels (10 vs. 14 cmH2O). Segmentation quality was evaluated with the number of airways and number of endpoints reached. A generalized mixed-effects model explored the estimated effect of each protocol.

MEASUREMENTS AND MAIN RESULTS:
Patient characteristics and lung function did not significantly differ between protocols. Compared to baseline inspiratory acquisitions, expiratory acquisitions after 15 min of 14 cmH2O PAP segmented 1.63-fold more airways (95% CI 1.07-2.48; p = 0.018) and reached 1.34-fold more endpoints (95% CI 1.08-1.66; p = 0.004). Inspiratory acquisitions performed immediately under 10 cmH2O PAP reached 1.20-fold (95% CI 1.09-1.33; p < 0.001) more endpoints; after 15 min the increase was 1.14-fold (95% CI 1.05-1.24; p < 0.001).

CONCLUSIONS:
CT acquisitions with PAP segment more airways and reach more endpoints than baseline inspiratory acquisitions. The improvement is particularly evident at end-expiration after 15 min of 14 cmH2O PAP. Further studies must confirm that the improvement increases diagnostic yield when using VBN to evaluate peripheral pulmonary lesions.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.145 Approved no  
  Call Number Admin @ si @ DGT2018 Serial 3135  
Permanent link to this record
 

 
Author Debora Gil; Rosa Maria Ortiz; Carles Sanchez; Antoni Rosell edit   pdf
doi  openurl
  Title Objective endoscopic measurements of central airway stenosis. A pilot study Type Journal Article
  Year 2018 Publication Respiration Abbreviated Journal RES  
  Volume 95 Issue Pages 63–69  
  Keywords Bronchoscopy; Tracheal stenosis; Airway stenosis; Computer-assisted analysis  
  Abstract Endoscopic estimation of the degree of stenosis in central airway obstruction is subjective and highly variable. Objective: To determine the benefits of using SENSA (System for Endoscopic Stenosis Assessment), an image-based computational software, for obtaining objective stenosis index (SI) measurements among a group of expert bronchoscopists and general pulmonologists. Methods: A total of 7 expert bronchoscopists and 7 general pulmonologists were enrolled to validate SENSA usage. The SI obtained by the physicians and by SENSA were compared with a reference SI to set their precision in SI computation. We used SENSA to efficiently obtain this reference SI in 11 selected cases of benign stenosis. A Web platform with three user-friendly microtasks was designed to gather the data. The users had to visually estimate the SI from videos with and without contours of the normal and the obstructed area provided by SENSA. The users were able to modify the SENSA contours to define the reference SI using morphometric bronchoscopy. Results: Visual SI estimation accuracy was associated with neither bronchoscopic experience (p = 0.71) nor the contours of the normal and the obstructed area provided by the system (p = 0.13). The precision of the SI by SENSA was 97.7% (95% CI: 92.4-103.7), which is significantly better than the precision of the SI by visual estimation (p < 0.001), with an improvement by at least 15%. Conclusion: SENSA provides objective SI measurements with a precision of up to 99.5%, which can be calculated from any bronchoscope using an affordable scalable interface. Providing normal and obstructed contours on bronchoscopic videos does not improve physicians' visual estimation of the SI.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.075; 600.096; 600.145 Approved no  
  Call Number Admin @ si @ GOS2018 Serial 3043  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: