toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Aura Hernandez-Sabate; Debora Gil;Eduard Fernandez-Nofrerias;Petia Radeva; Enric Marti edit   pdf
doi  openurl
  Title (up) Approaching Artery Rigid Dynamics in IVUS Type Journal Article
  Year 2009 Publication IEEE Transactions on Medical Imaging Abbreviated Journal TMI  
  Volume 28 Issue 11 Pages 1670-1680  
  Keywords Fourier analysis; intravascular ultrasound (IVUS) dynamics; longitudinal motion; quality measures; tissue deformation.  
  Abstract Tissue biomechanical properties (like strain and stress) are playing an increasing role in diagnosis and long-term treatment of intravascular coronary diseases. Their assessment strongly relies on estimation of vessel wall deformation. Since intravascular ultrasound (IVUS) sequences allow visualizing vessel morphology and reflect its dynamics, this technique represents a useful tool for evaluation of tissue mechanical properties. Image misalignment introduced by vessel-catheter motion is a major artifact for a proper tracking of tissue deformation. In this work, we focus on compensating and assessing IVUS rigid in-plane motion due to heart beating. Motion parameters are computed by considering both the vessel geometry and its appearance in the image. Continuum mechanics laws serve to introduce a novel score measuring motion reduction in in vivo sequences. Synthetic experiments validate the proposed score as measure of motion parameters accuracy; whereas results in in vivo pullbacks show the reliability of the presented methodologies in clinical cases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0278-0062 ISBN Medium  
  Area Expedition Conference  
  Notes IAM; MILAB Approved no  
  Call Number IAM @ iam @ HGF2009 Serial 1545  
Permanent link to this record
 

 
Author Sonia Baeza; R.Domingo; M.Salcedo; G.Moragas; J.Deportos; I.Garcia Olive; Carles Sanchez; Debora Gil; Antoni Rosell edit  url
openurl 
  Title (up) Artificial Intelligence to Optimize Pulmonary Embolism Diagnosis During Covid-19 Pandemic by Perfusion SPECT/CT, a Pilot Study Type Journal Article
  Year 2021 Publication American Journal of Respiratory and Critical Care Medicine Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.145 Approved no  
  Call Number Admin @ si @ BDS2021 Serial 3591  
Permanent link to this record
 

 
Author Carles Sanchez; Oriol Ramos Terrades; Patricia Marquez; Enric Marti; J.Roncaries; Debora Gil edit  doi
openurl 
  Title (up) Automatic evaluation of practices in Moodle for Self Learning in Engineering Type Journal
  Year 2015 Publication Journal of Technology and Science Education Abbreviated Journal JOTSE  
  Volume 5 Issue 2 Pages 97-106  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; DAG; 600.075; 600.077 Approved no  
  Call Number Admin @ si @ SRM2015 Serial 2610  
Permanent link to this record
 

 
Author Ole Larsen; Petia Radeva; Enric Marti edit   pdf
doi  openurl
  Title (up) Bounds on the optimal elasticity parameters for a snake Type Journal Article
  Year 1995 Publication Image Analysis and Processing Abbreviated Journal  
  Volume Issue Pages 37-42  
  Keywords  
  Abstract This paper develops a formalism by which an estimate for the upper and lower bounds for the elasticity parameters for a snake can be obtained. Objects different in size and shape give rise to different bounds. The bounds can be obtained based on an analysis of the shape of the object of interest. Experiments on synthetic images show a good correlation between the estimated behaviour of the snake and the one actually observed. Experiments on real X-ray images show that the parameters for optimal segmentation lie within the estimated bounds.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB;IAM Approved no  
  Call Number IAM @ iam @ LRM1995a Serial 1559  
Permanent link to this record
 

 
Author Juan Borrego-Carazo; Carles Sanchez; David Castells; Jordi Carrabina; Debora Gil edit   pdf
doi  openurl
  Title (up) BronchoPose: an analysis of data and model configuration for vision-based bronchoscopy pose estimation Type Journal Article
  Year 2023 Publication Computer Methods and Programs in Biomedicine Abbreviated Journal CMPB  
  Volume 228 Issue Pages 107241  
  Keywords Videobronchoscopy guiding; Deep learning; Architecture optimization; Datasets; Standardized evaluation framework; Pose estimation  
  Abstract Vision-based bronchoscopy (VB) models require the registration of the virtual lung model with the frames from the video bronchoscopy to provide effective guidance during the biopsy. The registration can be achieved by either tracking the position and orientation of the bronchoscopy camera or by calibrating its deviation from the pose (position and orientation) simulated in the virtual lung model. Recent advances in neural networks and temporal image processing have provided new opportunities for guided bronchoscopy. However, such progress has been hindered by the lack of comparative experimental conditions.
In the present paper, we share a novel synthetic dataset allowing for a fair comparison of methods. Moreover, this paper investigates several neural network architectures for the learning of temporal information at different levels of subject personalization. In order to improve orientation measurement, we also present a standardized comparison framework and a novel metric for camera orientation learning. Results on the dataset show that the proposed metric and architectures, as well as the standardized conditions, provide notable improvements to current state-of-the-art camera pose estimation in video bronchoscopy.
 
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; Approved no  
  Call Number Admin @ si @ BSC2023 Serial 3702  
Permanent link to this record
 

 
Author Esmitt Ramirez; Carles Sanchez; Agnes Borras; Marta Diez-Ferrer; Antoni Rosell; Debora Gil edit   pdf
url  openurl
  Title (up) BronchoX: bronchoscopy exploration software for biopsy intervention planning Type Journal
  Year 2018 Publication Healthcare Technology Letters Abbreviated Journal HTL  
  Volume 5 Issue 5 Pages 177–182  
  Keywords  
  Abstract Virtual bronchoscopy (VB) is a non-invasive exploration tool for intervention planning and navigation of possible pulmonary lesions (PLs). A VB software involves the location of a PL and the calculation of a route, starting from the trachea, to reach it. The selection of a VB software might be a complex process, and there is no consensus in the community of medical software developers in which is the best-suited system to use or framework to choose. The authors present Bronchoscopy Exploration (BronchoX), a VB software to plan biopsy interventions that generate physician-readable instructions to reach the PLs. The authors’ solution is open source, multiplatform, and extensible for future functionalities, designed by their multidisciplinary research and development group. BronchoX is a compound of different algorithms for segmentation, visualisation, and navigation of the respiratory tract. Performed results are a focus on the test the effectiveness of their proposal as an exploration software, also to measure its accuracy as a guiding system to reach PLs. Then, 40 different virtual planning paths were created to guide physicians until distal bronchioles. These results provide a functional software for BronchoX and demonstrate how following simple instructions is possible to reach distal lesions from the trachea.  
  Address  
  Corporate Author rank (SJR) Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.096; 600.075; 601.323; 601.337; 600.145 Approved no  
  Call Number Admin @ si @ RSB2018a Serial 3132  
Permanent link to this record
 

 
Author Mireia Sole; Joan Blanco; Debora Gil; Oliver Valero; Alvaro Pascual; B. Cardenas; G. Fonseka; E. Anton; Richard Frodsham; Francesca Vidal; Zaida Sarrate edit  url
openurl 
  Title (up) Chromosomal positioning in spermatogenic cells is influenced by chromosomal factors associated with gene activity, bouquet formation, and meiotic sex-chromosome inactivation Type Journal Article
  Year 2021 Publication Chromosoma Abbreviated Journal  
  Volume 130 Issue Pages 163-175  
  Keywords  
  Abstract Chromosome territoriality is not random along the cell cycle and it is mainly governed by intrinsic chromosome factors and gene expression patterns. Conversely, very few studies have explored the factors that determine chromosome territoriality and its influencing factors during meiosis. In this study, we analysed chromosome positioning in murine spermatogenic cells using three-dimensionally fluorescence in situ hybridization-based methodology, which allows the analysis of the entire karyotype. The main objective of the study was to decipher chromosome positioning in a radial axis (all analysed germ-cell nuclei) and longitudinal axis (only spermatozoa) and to identify the chromosomal factors that regulate such an arrangement. Results demonstrated that the radial positioning of chromosomes during spermatogenesis was cell-type specific and influenced by chromosomal factors associated to gene activity. Chromosomes with specific features that enhance transcription (high GC content, high gene density and high numbers of predicted expressed genes) were preferentially observed in the inner part of the nucleus in virtually all cell types. Moreover, the position of the sex chromosomes was influenced by their transcriptional status, from the periphery of the nucleus when its activity was repressed (pachytene) to a more internal position when it is partially activated (spermatid). At pachytene, chromosome positioning was also influenced by chromosome size due to the bouquet formation. Longitudinal chromosome positioning in the sperm nucleus was not random either, suggesting the importance of ordered longitudinal positioning for the release and activation of the paternal genome after fertilisation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.145 Approved no  
  Call Number Admin @ si @ SBG2021 Serial 3592  
Permanent link to this record
 

 
Author Sonia Baeza; Debora Gil; Ignasi Garcia Olive; Maite Salcedo Pujantell; Jordi Deportos; Carles Sanchez; Guillermo Torres; Gloria Moragas; Antoni Rosell edit  url
doi  openurl
  Title (up) Correction: A novel intelligent radiomic analysis of perfusion SPECT/CT images to optimize pulmonary embolism diagnosis in COVID-19 patients Type Journal Article
  Year 2023 Publication European Journal of Nuclear Medicine and Molecular Imaging Abbreviated Journal EJNMMI PHYSICS  
  Volume 10 Issue 1 Pages 13  
  Keywords early diagnosis; Lung Cancer; nodule diagnosis; nodule diagnosis; Radiomics; Screening  
  Abstract This study shows the generation process and the subsequent study of the representation space obtained by extracting GLCM texture features from computer-aided tomography (CT) scans of pulmonary nodules (PN). For this, data from 92 patients from the Germans Trias i Pujol University Hospital were used. The workflow focuses on feature extraction using Pyradiomics and the VGG16 Convolutional Neural Network (CNN). The aim of the study is to assess whether the data obtained have a positive impact on the diagnosis of lung cancer (LC). To design a machine learning (ML) model training method that allows generalization, we train SVM and neural network (NN) models, evaluating diagnosis performance using metrics defined at slice and nodule level.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number BGG2023 Serial 3858  
Permanent link to this record
 

 
Author Ernest Valveny; Enric Marti edit   pdf
doi  openurl
  Title (up) Deformable Template Matching within a Bayesian Framework for Hand-Written Graphic Symbol Recognition Type Journal Article
  Year 2000 Publication Graphics Recognition Recent Advances Abbreviated Journal  
  Volume 1941 Issue Pages 193-208  
  Keywords  
  Abstract We describe a method for hand-drawn symbol recognition based on deformable template matching able to handle uncertainty and imprecision inherent to hand-drawing. Symbols are represented as a set of straight lines and their deformations as geometric transformations of these lines. Matching, however, is done over the original binary image to avoid loss of information during line detection. It is defined as an energy minimization problem, using a Bayesian framework which allows to combine fidelity to ideal shape of the symbol and flexibility to modify the symbol in order to get the best fit to the binary input image. Prior to matching, we find the best global transformation of the symbol to start the recognition process, based on the distance between symbol lines and image lines. We have applied this method to the recognition of dimensions and symbols in architectural floor plans and we show its flexibility to recognize distorted symbols.  
  Address  
  Corporate Author Springer Verlag Thesis  
  Publisher Springer Verlag Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG;IAM; Approved no  
  Call Number IAM @ iam @ MVA2000 Serial 1655  
Permanent link to this record
 

 
Author Jose Elias Yauri; M. Lagos; H. Vega-Huerta; P. de-la-Cruz; G.L.E Maquen-Niño; E. Condor-Tinoco edit  doi
openurl 
  Title (up) Detection of Epileptic Seizures Based-on Channel Fusion and Transformer Network in EEG Recordings Type Journal Article
  Year 2023 Publication International Journal of Advanced Computer Science and Applications Abbreviated Journal IJACSA  
  Volume 14 Issue 5 Pages 1067-1074  
  Keywords Epilepsy; epilepsy detection; EEG; EEG channel fusion; convolutional neural network; self-attention  
  Abstract According to the World Health Organization, epilepsy affects more than 50 million people in the world, and specifically, 80% of them live in developing countries. Therefore, epilepsy has become among the major public issue for many governments and deserves to be engaged. Epilepsy is characterized by uncontrollable seizures in the subject due to a sudden abnormal functionality of the brain. Recurrence of epilepsy attacks change people’s lives and interferes with their daily activities. Although epilepsy has no cure, it could be mitigated with an appropriated diagnosis and medication. Usually, epilepsy diagnosis is based on the analysis of an electroencephalogram (EEG) of the patient. However, the process of searching for seizure patterns in a multichannel EEG recording is a visual demanding and time consuming task, even for experienced neurologists. Despite the recent progress in automatic recognition of epilepsy, the multichannel nature of EEG recordings still challenges current methods. In this work, a new method to detect epilepsy in multichannel EEG recordings is proposed. First, the method uses convolutions to perform channel fusion, and next, a self-attention network extracts temporal features to classify between interictal and ictal epilepsy states. The method was validated in the public CHB-MIT dataset using the k-fold cross-validation and achieved 99.74% of specificity and 99.15% of sensitivity, surpassing current approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number Admin @ si @ Serial 3856  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: