toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Debora Gil; Agnes Borras; Manuel Ballester; Francesc Carreras; Ruth Aris; Manuel Vazquez; Enric Marti; Ferran Poveda edit   pdf
url  doi
isbn  openurl
  Title (down) MIOCARDIA: Integrating cardiac function and muscular architecture for a better diagnosis Type Conference Article
  Year 2011 Publication 14th International Symposium on Applied Sciences in Biomedical and Communication Technologies Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Deep understanding of myocardial structure of the heart would unravel crucial knowledge for clinical and medical procedures. The MIOCARDIA project is a multidisciplinary project in cooperation with l'Hospital de la Santa Creu i de Sant Pau, Clinica la Creu Blanca and Barcelona Supercomputing Center. The ultimate goal of this project is defining a computational model of the myocardium. The model takes into account the deep interrelation between the anatomy and the mechanics of the heart. The paper explains the workflow of the MIOCARDIA project. It also introduces a multiresolution reconstruction technique based on DT-MRI streamlining for simplified global myocardial model generation. Our reconstructions can restore the most complex myocardial structures and provides evidences of a global helical organization.  
  Address Barcelona; Spain  
  Corporate Author Association for Computing Machinery Thesis  
  Publisher Place of Publication Barcelona, Spain Editor Association for Computing Machinery  
  Language english Summary Language english Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4503-0913-4 Medium  
  Area Expedition Conference ISABEL  
  Notes IAM Approved no  
  Call Number IAM @ iam @ GGB2011 Serial 1691  
Permanent link to this record
 

 
Author Jose Elias Yauri; Aura Hernandez-Sabate; Pau Folch; Debora Gil edit  doi
openurl 
  Title (down) Mental Workload Detection Based on EEG Analysis Type Conference Article
  Year 2021 Publication Artificial Intelligent Research and Development. Proceedings 23rd International Conference of the Catalan Association for Artificial Intelligence. Abbreviated Journal  
  Volume 339 Issue Pages 268-277  
  Keywords Cognitive states; Mental workload; EEG analysis; Neural Networks.  
  Abstract The study of mental workload becomes essential for human work efficiency, health conditions and to avoid accidents, since workload compromises both performance and awareness. Although workload has been widely studied using several physiological measures, minimising the sensor network as much as possible remains both a challenge and a requirement.
Electroencephalogram (EEG) signals have shown a high correlation to specific cognitive and mental states like workload. However, there is not enough evidence in the literature to validate how well models generalize in case of new subjects performing tasks of a workload similar to the ones included during model’s training.
In this paper we propose a binary neural network to classify EEG features across different mental workloads. Two workloads, low and medium, are induced using two variants of the N-Back Test. The proposed model was validated in a dataset collected from 16 subjects and shown a high level of generalization capability: model reported an average recall of 81.81% in a leave-one-out subject evaluation.
 
  Address Virtual; October 20-22 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CCIA  
  Notes IAM; 600.139; 600.118; 600.145 Approved no  
  Call Number Admin @ si @ Serial 3723  
Permanent link to this record
 

 
Author Debora Gil; Jaume Garcia; Aura Hernandez-Sabate; Enric Marti edit   pdf
url  doi
openurl 
  Title (down) Manifold parametrization of the left ventricle for a statistical modelling of its complete anatomy Type Conference Article
  Year 2010 Publication 8th Medical Imaging Abbreviated Journal  
  Volume 7623 Issue 762304 Pages 304  
  Keywords  
  Abstract Distortion of Left Ventricle (LV) external anatomy is related to some dysfunctions, such as hypertrophy. The architecture of myocardial fibers determines LV electromechanical activation patterns as well as mechanics. Thus, their joined modelling would allow the design of specific interventions (such as peacemaker implantation and LV remodelling) and therapies (such as resynchronization). On one hand, accurate modelling of external anatomy requires either a dense sampling or a continuous infinite dimensional approach, which requires non-Euclidean statistics. On the other hand, computation of fiber models requires statistics on Riemannian spaces. Most approaches compute separate statistical models for external anatomy and fibers architecture. In this work we propose a general mathematical framework based on differential geometry concepts for computing a statistical model including, both, external and fiber anatomy. Our framework provides a continuous approach to external anatomy supporting standard statistics. We also provide a straightforward formula for the computation of the Riemannian fiber statistics. We have applied our methodology to the computation of complete anatomical atlas of canine hearts from diffusion tensor studies. The orientation of fibers over the average external geometry agrees with the segmental description of orientations reported in the literature.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference SPIE  
  Notes IAM Approved no  
  Call Number IAM @ iam @ GGH2010a Serial 1522  
Permanent link to this record
 

 
Author Esmitt Ramirez; Carles Sanchez; Debora Gil edit   pdf
url  doi
openurl 
  Title (down) Localizing Pulmonary Lesions Using Fuzzy Deep Learning Type Conference Article
  Year 2019 Publication 21st International Symposium on Symbolic and Numeric Algorithms for Scientific Computing Abbreviated Journal  
  Volume Issue Pages 290-294  
  Keywords  
  Abstract The usage of medical images is part of the clinical daily in several healthcare centers around the world. Particularly, Computer Tomography (CT) images are an important key in the early detection of suspicious lung lesions. The CT image exploration allows the detection of lung lesions before any invasive procedure (e.g. bronchoscopy, biopsy). The effective localization of lesions is performed using different image processing and computer vision techniques. Lately, the usage of deep learning models into medical imaging from detection to prediction shown that is a powerful tool for Computer-aided software. In this paper, we present an approach to localize pulmonary lung lesion using fuzzy deep learning. Our approach uses a simple convolutional neural network based using the LIDC-IDRI dataset. Each image is divided into patches associated a probability vector (fuzzy) according their belonging to anatomical structures on a CT. We showcase our approach as part of a full CAD system to exploration, planning, guiding and detection of pulmonary lesions.  
  Address Timisoara; Rumania; September 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference SYNASC  
  Notes IAM; 600.145; 600.140; 601.337; 601.323 Approved no  
  Call Number Admin @ si @ RSG2019 Serial 3531  
Permanent link to this record
 

 
Author Patricia Marquez; Debora Gil; R.Mester; Aura Hernandez-Sabate edit   pdf
openurl 
  Title (down) Local Analysis of Confidence Measures for Optical Flow Quality Evaluation Type Conference Article
  Year 2014 Publication 9th International Conference on Computer Vision Theory and Applications Abbreviated Journal  
  Volume 3 Issue Pages 450-457  
  Keywords Optical Flow; Confidence Measure; Performance Evaluation.  
  Abstract Optical Flow (OF) techniques facing the complexity of real sequences have been developed in the last years. Even using the most appropriate technique for our specific problem, at some points the output flow might fail to achieve the minimum error required for the system. Confidence measures computed from either input data or OF output should discard those points where OF is not accurate enough for its further use. It follows that evaluating the capabilities of a confidence measure for bounding OF error is as important as the definition
itself. In this paper we analyze different confidence measures and point out their advantages and limitations for their use in real world settings. We also explore the agreement with current tools for their evaluation of confidence measures performance.
 
  Address Lisboa; January 2014  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference VISAPP  
  Notes IAM; ADAS; 600.044; 600.060; 600.057; 601.145; 600.076; 600.075 Approved no  
  Call Number Admin @ si @ MGM2014 Serial 2432  
Permanent link to this record
 

 
Author Antoni Gurgui; Debora Gil; Enric Marti; Vicente Grau edit  doi
openurl 
  Title (down) Left-Ventricle Basal Region Constrained Parametric Mapping to Unitary Domain Type Conference Article
  Year 2016 Publication 7th International Workshop on Statistical Atlases & Computational Modelling of the Heart Abbreviated Journal  
  Volume 10124 Issue Pages 163-171  
  Keywords Laplacian; Constrained maps; Parameterization; Basal ring  
  Abstract Due to its complex geometry, the basal ring is often omitted when putting different heart geometries into correspondence. In this paper, we present the first results on a new mapping of the left ventricle basal rings onto a normalized coordinate system using a fold-over free approach to the solution to the Laplacian. To guarantee correspondences between different basal rings, we imposed some internal constrained positions at anatomical landmarks in the normalized coordinate system. To prevent internal fold-overs, constraints are handled by cutting the volume into regions defined by anatomical features and mapping each piece of the volume separately. Initial results presented in this paper indicate that our method is able to handle internal constrains without introducing fold-overs and thus guarantees one-to-one mappings between different basal ring geometries.  
  Address Athens; October 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference STACOM  
  Notes IAM; Approved no  
  Call Number Admin @ si @ GGM2016 Serial 2884  
Permanent link to this record
 

 
Author Saad Minhas; Aura Hernandez-Sabate; Shoaib Ehsan; Katerine Diaz; Ales Leonardis; Antonio Lopez; Klaus McDonald Maier edit   pdf
openurl 
  Title (down) LEE: A photorealistic Virtual Environment for Assessing Driver-Vehicle Interactions in Self-Driving Mode Type Conference Article
  Year 2016 Publication 14th European Conference on Computer Vision Workshops Abbreviated Journal  
  Volume 9915 Issue Pages 894-900  
  Keywords Simulation environment; Automated Driving; Driver-Vehicle interaction  
  Abstract Photorealistic virtual environments are crucial for developing and testing automated driving systems in a safe way during trials. As commercially available simulators are expensive and bulky, this paper presents a low-cost, extendable, and easy-to-use (LEE) virtual environment with the aim to highlight its utility for level 3 driving automation. In particular, an experiment is performed using the presented simulator to explore the influence of different variables regarding control transfer of the car after the system was driving autonomously in a highway scenario. The results show that the speed of the car at the time when the system needs to transfer the control to the human driver is critical.  
  Address Amsterdam; The Netherlands; October 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ECCVW  
  Notes ADAS;IAM; 600.085; 600.076 Approved no  
  Call Number MHE2016 Serial 2865  
Permanent link to this record
 

 
Author Ernest Valveny; Enric Marti edit   pdf
doi  openurl
  Title (down) Learning of structural descriptions of graphic symbols using deformable template matching Type Conference Article
  Year 2001 Publication Proc. Sixth Int Document Analysis and Recognition Conf Abbreviated Journal  
  Volume Issue Pages 455-459  
  Keywords  
  Abstract Accurate symbol recognition in graphic documents needs an accurate representation of the symbols to be recognized. If structural approaches are used for recognition, symbols have to be described in terms of their shape, using structural relationships among extracted features. Unlike statistical pattern recognition, in structural methods, symbols are usually manually defined from expertise knowledge, and not automatically infered from sample images. In this work we explain one approach to learn from examples a representative structural description of a symbol, thus providing better information about shape variability. The description of a symbol is based on a probabilistic model. It consists of a set of lines described by the mean and the variance of line parameters, respectively providing information about the model of the symbol, and its shape variability. The representation of each image in the sample set as a set of lines is achieved using deformable template matching.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG;IAM; Approved no  
  Call Number IAM @ iam @ VMA2001 Serial 1654  
Permanent link to this record
 

 
Author Antoni Gurgui; Debora Gil; Enric Marti edit  url
doi  isbn
openurl 
  Title (down) Laplacian Unitary Domain for Texture Morphing Type Conference Article
  Year 2015 Publication Proceedings of the 10th International Conference on Computer Vision Theory and Applications VISIGRAPP2015 Abbreviated Journal  
  Volume 1 Issue Pages 693-699  
  Keywords Facial; metamorphosis;LaplacianMorphing  
  Abstract Deformation of expressive textures is the gateway to realistic computer synthesis of expressions. By their good mathematical properties and flexible formulation on irregular meshes, most texture mappings rely on solutions to the Laplacian in the cartesian space. In the context of facial expression morphing, this approximation can be seen from the opposite point of view by neglecting the metric. In this paper, we use the properties of the Laplacian in manifolds to present a novel approach to warping expressive facial images in order to generate a morphing between them.  
  Address Munich; Germany; February 2015  
  Corporate Author Thesis  
  Publisher SciTePress Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-989-758-089-5 Medium  
  Area Expedition Conference VISAPP  
  Notes IAM; 600.075 Approved no  
  Call Number Admin @ si @ GGM2015 Serial 2614  
Permanent link to this record
 

 
Author Debora Gil; Petia Radeva; J. Mauri edit   pdf
openurl 
  Title (down) Ivus Segmentation Via a Regularized Curvature Flow Type Conference Article
  Year 2002 Publication X Congreso Anual de la Sociedad Española de Ingeniería Biomédica CASEIB 2002 Abbreviated Journal  
  Volume Issue Pages 133-136  
  Keywords  
  Abstract Cardiac diseases are diagnosed and treated through a study of the morphology and dynamics of cardiac arteries. In- travascular Ultrasound (IVUS) imaging is of high interest to physicians since it provides both information. At the current state-of-the-art in image segmentation, a robust detection of the arterial lumen in IVUS demands manual intervention or ECG-gating. Manual intervention is a tedious and time consuming task that requires experienced observers, meanwhile ECG-gating is an acquisition technique not available in all clinical centers. We introduce a parametric algorithm that detects the arterial luminal border in in vivo sequences. The method consist in smoothing the sequences’ level surfaces under a regularized mean curvature flow that admits non-trivial steady states. The flow is based on a measure of the surface local smoothness that takes into account regularity of the surface curvature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Saragossa, Espanya Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM;MILAB Approved no  
  Call Number IAM @ iam @ GRM2002 Serial 1536  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: