toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Petia Radeva; Enric Marti edit   pdf
doi  openurl
  Title An improved model of snakes for model-based segmentation Type Conference Article
  Year 1995 Publication Proceedings of Computer Analysis of Images and Patterns Abbreviated Journal  
  Volume Issue Pages 515-520  
  Keywords  
  Abstract The main advantage of segmentation by snakes consists in its ability to incorporate smoothness constraints on the detected shapes that can occur. Likewise, we propose to model snakes with other properties that reflect the information provided about the object of interest in a different extent. We consider different kinds of snakes, those searching for contours with a certain direction, those preserving an object’s model, those seeking for symmetry, those expanding open, etc. The availability of such a collection of snakes allows not only the more complete use of the knowledge about the segmented object, but also to solve some problems of the existing snakes. Our experiments on segmentation of facial features justify the usefulness of snakes with different properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up) CAIP  
  Notes MILAB;IAM Approved no  
  Call Number IAM @ iam @ RaM1995b Serial 1632  
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Debora Gil; David Roche; Monica M. S. Matsumoto; Sergio S. Furuie edit   pdf
url  openurl
  Title Inferring the Performance of Medical Imaging Algorithms Type Conference Article
  Year 2011 Publication 14th International Conference on Computer Analysis of Images and Patterns Abbreviated Journal  
  Volume 6854 Issue Pages 520-528  
  Keywords Validation, Statistical Inference, Medical Imaging Algorithms.  
  Abstract Evaluation of the performance and limitations of medical imaging algorithms is essential to estimate their impact in social, economic or clinical aspects. However, validation of medical imaging techniques is a challenging task due to the variety of imaging and clinical problems involved, as well as, the difficulties for systematically extracting a reliable solely ground truth. Although specific validation protocols are reported in any medical imaging paper, there are still two major concerns: definition of standardized methodologies transversal to all problems and generalization of conclusions to the whole clinical data set.
We claim that both issues would be fully solved if we had a statistical model relating ground truth and the output of computational imaging techniques. Such a statistical model could conclude to what extent the algorithm behaves like the ground truth from the analysis of a sampling of the validation data set. We present a statistical inference framework reporting the agreement and describing the relationship of two quantities. We show its transversality by applying it to validation of two different tasks: contour segmentation and landmark correspondence.
 
  Address Sevilla  
  Corporate Author Thesis  
  Publisher Springer-Verlag Berlin Heidelberg Place of Publication Berlin Editor Pedro Real; Daniel Diaz-Pernil; Helena Molina-Abril; Ainhoa Berciano; Walter Kropatsch  
  Language Summary Language Original Title  
  Series Editor Series Title L Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up) CAIP  
  Notes IAM; ADAS Approved no  
  Call Number IAM @ iam @ HGR2011 Serial 1676  
Permanent link to this record
 

 
Author Joel Barajas; Jaume Garcia; Francesc Carreras; Sandra Pujades; Petia Radeva edit   pdf
url  isbn
openurl 
  Title Angle Images Using Gabor Filters in Cardiac Tagged MRI Type Conference Article
  Year 2005 Publication Proceeding of the 2005 conference on Artificial Intelligence Research and Development Abbreviated Journal  
  Volume Issue Pages 107-114  
  Keywords Angle Images, Gabor Filters, Harp, Tagged Mri  
  Abstract Tagged Magnetic Resonance Imaging (MRI) is a non-invasive technique used to examine cardiac deformation in vivo. An Angle Image is a representation of a Tagged MRI which recovers the relative position of the tissue respect to the distorted tags. Thus cardiac deformation can be estimated. This paper describes a new approach to generate Angle Images using a bank of Gabor filters in short axis cardiac Tagged MRI. Our method improves the Angle Images obtained by global techniques, like HARP, with a local frequency analysis. We propose to use the phase response of a combination of a Gabor filters bank, and use it to find a more precise deformation of the left ventricle. We demonstrate the accuracy of our method over HARP by several experimental results.  
  Address Amsterdam; The Netherlands  
  Corporate Author Thesis  
  Publisher IOS Press Place of Publication Amsterdam, The Netherlands Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 1-58603-560-6 Medium  
  Area Expedition Conference (up) CAIRD  
  Notes IAM;MILAB Approved no  
  Call Number BCNPCL @ bcnpcl @ BGC2005; IAM @ iam Serial 595  
Permanent link to this record
 

 
Author Jorge Bernal; Debora Gil; Carles Sanchez; F. Javier Sanchez edit   pdf
doi  isbn
openurl 
  Title Discarding Non Informative Regions for Efficient Colonoscopy Image Analysis Type Conference Article
  Year 2014 Publication 1st MICCAI Workshop on Computer-Assisted and Robotic Endoscopy Abbreviated Journal  
  Volume 8899 Issue Pages 1-10  
  Keywords Image Segmentation; Polyps, Colonoscopy; Valley Information; Energy Maps  
  Abstract In this paper we present a novel polyp region segmentation method for colonoscopy videos. Our method uses valley information associated to polyp boundaries in order to provide an initial segmentation. This first segmentation is refined to eliminate boundary discontinuities caused by image artifacts or other elements of the scene. Experimental results over a publicly annotated database show that our method outperforms both general and specific segmentation methods by providing more accurate regions rich in polyp content. We also prove how image preprocessing is needed to improve final polyp region segmentation.  
  Address Boston; USA; September 2014  
  Corporate Author Thesis  
  Publisher Springer International Publishing Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-319-13409-3 Medium  
  Area Expedition Conference (up) CARE  
  Notes MV; IAM; 600.044; 600.047; 600.060; 600.075 Approved no  
  Call Number Admin @ si @ BGS2014b Serial 2503  
Permanent link to this record
 

 
Author Sergio Vera; Miguel Angel Gonzalez Ballester; Debora Gil edit  url
doi  openurl
  Title A Novel Cochlear Reference Frame Based On The Laplace Equation Type Conference Article
  Year 2015 Publication 29th international Congress and Exhibition on Computer Assisted Radiology and Surgery Abbreviated Journal  
  Volume 10 Issue 1 Pages 1-312  
  Keywords  
  Abstract Poster  
  Address Barcelona; Spain; June 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up) CARS  
  Notes IAM; 600.075 Approved no  
  Call Number Admin @ si @ VGG2015 Serial 2615  
Permanent link to this record
 

 
Author Debora Gil; Guillermo Torres edit   pdf
openurl 
  Title A multi-shape loss function with adaptive class balancing for the segmentation of lung structures Type Conference Article
  Year 2020 Publication 34th International Congress and Exhibition on Computer Assisted Radiology & Surgery Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address Virtual; June 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up) CARS  
  Notes IAM; 600.139; 600.145 Approved no  
  Call Number Admin @ si @ GiT2020 Serial 3472  
Permanent link to this record
 

 
Author Guillermo Torres; Debora Gil; Antoni Rosell; S. Mena; Carles Sanchez edit  openurl
  Title Virtual Radiomics Biopsy for the Histological Diagnosis of Pulmonary Nodules Type Conference Article
  Year 2023 Publication 37th International Congress and Exhibition is organized by Computer Assisted Radiology and Surgery Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Pòster  
  Address Munich; Germany; June 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up) CARS  
  Notes IAM Approved no  
  Call Number Admin @ si @ TGR2023a Serial 3950  
Permanent link to this record
 

 
Author C. Santa-Marta; Jaume Garcia; A. Bajo; J.J. Vaquero; M. Ledesma-Carbayo; Debora Gil edit  openurl
  Title Influence of the Temporal Resolution on the Quantification of Displacement Fields in Cardiac Magnetic Resonance Tagged Images Type Conference Article
  Year 2008 Publication XXVI Congreso Anual de la Sociedad Española de Ingenieria Biomedica Abbreviated Journal  
  Volume Issue Pages 352–353  
  Keywords  
  Abstract It is difficult to acquire tagged cardiac MR images with a high temporal and spatial resolution using clinical MR scanners. However, if such images are used for quantifying scores based on motion, it is essential a resolution as high as possibl e. This paper explores the influence of the temporal resolution of a tagged series on the quantification of myocardial dynamic parameters. To such purpose we have designed a SPAMM (Spatial Modulation of Magnetization) sequence allowing acquisition of sequences at simple and double temporal resolution. Sequences are processed to compute myocardial motion by an automatic technique based on the tracking of the harmonic phase of tagged images (the Harmonic Phase Flow, HPF). The results have been compared to manual tracking of myocardial tags. The error in displacement fields for double resolution sequences reduces 17%.  
  Address Valladolid  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Roberto hornero, Saniel Abasolo  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up) CASEIB  
  Notes IAM; Approved no  
  Call Number IAM @ iam @ SGB2008 Serial 1033  
Permanent link to this record
 

 
Author David Roche; Debora Gil; Jesus Giraldo edit   pdf
url  isbn
openurl 
  Title An inference model for analyzing termination conditions of Evolutionary Algorithms Type Conference Article
  Year 2011 Publication 14th Congrès Català en Intel·ligencia Artificial Abbreviated Journal  
  Volume Issue Pages 216-225  
  Keywords Evolutionary Computation Convergence, Termination Conditions, Statistical Inference  
  Abstract In real-world problems, it is mandatory to design a termination condition for Evolutionary Algorithms (EAs) ensuring stabilization close to the unknown optimum. Distribution-based quantities are good candidates as far as suitable parameters are used. A main limitation for application to real-world problems is that such parameters strongly depend on the topology of the objective function, as well as, the EA paradigm used.
We claim that the termination problem would be fully solved if we had a model measuring to what extent a distribution-based quantity asymptotically behaves like the solution accuracy. We present a regression-prediction model that relates any two given quantities and reports if they can be statistically swapped as termination conditions. Our framework is applied to two issues. First, exploring if the parameters involved in the computation of distribution-based quantities influence their asymptotic behavior. Second, to what extent existing distribution-based quantities can be asymptotically exchanged for the accuracy of the EA solution.
 
  Address Lleida, Catalonia (Spain)  
  Corporate Author Associació Catalana Intel·ligència Artificial Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-60750-841-0 Medium  
  Area Expedition Conference (up) CCIA  
  Notes IAM Approved no  
  Call Number IAM @ iam @ RGG2011a Serial 1677  
Permanent link to this record
 

 
Author Jose Elias Yauri; Aura Hernandez-Sabate; Pau Folch; Debora Gil edit  doi
openurl 
  Title Mental Workload Detection Based on EEG Analysis Type Conference Article
  Year 2021 Publication Artificial Intelligent Research and Development. Proceedings 23rd International Conference of the Catalan Association for Artificial Intelligence. Abbreviated Journal  
  Volume 339 Issue Pages 268-277  
  Keywords Cognitive states; Mental workload; EEG analysis; Neural Networks.  
  Abstract The study of mental workload becomes essential for human work efficiency, health conditions and to avoid accidents, since workload compromises both performance and awareness. Although workload has been widely studied using several physiological measures, minimising the sensor network as much as possible remains both a challenge and a requirement.
Electroencephalogram (EEG) signals have shown a high correlation to specific cognitive and mental states like workload. However, there is not enough evidence in the literature to validate how well models generalize in case of new subjects performing tasks of a workload similar to the ones included during model’s training.
In this paper we propose a binary neural network to classify EEG features across different mental workloads. Two workloads, low and medium, are induced using two variants of the N-Back Test. The proposed model was validated in a dataset collected from 16 subjects and shown a high level of generalization capability: model reported an average recall of 81.81% in a leave-one-out subject evaluation.
 
  Address Virtual; October 20-22 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up) CCIA  
  Notes IAM; 600.139; 600.118; 600.145 Approved no  
  Call Number Admin @ si @ Serial 3723  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: