toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Record Links
Author Debora Gil; Petia Radeva edit   pdf
url  doi
isbn  openurl
  Title Curvature Vector Flow to Assure Convergent Deformable Models for Shape Modelling Type Book Chapter
  Year 2003 Publication Energy Minimization Methods In Computer Vision And Pattern Recognition Abbreviated Journal LNCS  
  Volume 2683 Issue Pages 357-372  
  Keywords Initial condition; Convex shape; Non convex analysis; Increase; Segmentation; Gradient; Standard; Standards; Concave shape; Flow models; Tracking; Edge detection; Curvature  
  Abstract Poor convergence to concave shapes is a main limitation of snakes as a standard segmentation and shape modelling technique. The gradient of the external energy of the snake represents a force that pushes the snake into concave regions, as its internal energy increases when new inexion points are created. In spite of the improvement of the external energy by the gradient vector ow technique, highly non convex shapes can not be obtained, yet. In the present paper, we develop a new external energy based on the geometry of the curve to be modelled. By tracking back the deformation of a curve that evolves by minimum curvature ow, we construct a distance map that encapsulates the natural way of adapting to non convex shapes. The gradient of this map, which we call curvature vector ow (CVF), is capable of attracting a snake towards any contour, whatever its geometry. Our experiments show that, any initial snake condition converges to the curve to be modelled in optimal time.  
  Address  
  Corporate Author Thesis  
  Publisher Springer, Berlin Place of Publication (up) Lisbon, PORTUGAL Editor Springer, B.  
  Language Summary Language Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 3-540-40498-8 Medium  
  Area Expedition Conference  
  Notes IAM;MILAB Approved no  
  Call Number IAM @ iam @ GIR2003b Serial 1535  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: