|
Records |
Links |
|
Author |
Debora Gil; Oriol Rodriguez-Leon; Petia Radeva; Aura Hernandez-Sabate |


|
|
Title |
Assessing Artery Motion Compensation in IVUS |
Type |
Book Chapter |
|
Year |
2007 |
Publication |
Computer Analysis Of Images And Patterns |
Abbreviated Journal |
LNCS |
|
|
Volume |
4673 |
Issue |
|
Pages |
213-220 |
|
|
Keywords |
validation standards; quality measures; IVUS motion compensation; conservation laws; Fourier development |
|
|
Abstract |
Cardiac dynamics suppression is a main issue for visual improvement and computation of tissue mechanical properties in IntraVascular UltraSound (IVUS). Although in recent times several motion compensation techniques have arisen, there is a lack of objective evaluation of motion reduction in in vivo pullbacks. We consider that the assessment protocol deserves special attention for the sake of a clinical applicability as reliable as possible. Our work focuses on defining a quality measure and a validation protocol assessing IVUS motion compensation. On the grounds of continuum mechanics laws we introduce a novel score measuring motion reduction in in vivo sequences. Synthetic experiments validate the proposed score as measure of motion parameters accuracy; while results in in vivo pullbacks show its reliability in clinical cases. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springerlink |
Place of Publication  |
Heidelberg |
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
Lecture Notes in Computer Science |
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-3-540-74271-5 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM;MILAB |
Approved |
no |
|
|
Call Number |
IAM @ iam @ GRR2007 |
Serial |
1540 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; Petia Radeva |



|
|
Title |
Curvature Vector Flow to Assure Convergent Deformable Models for Shape Modelling |
Type |
Book Chapter |
|
Year |
2003 |
Publication |
Energy Minimization Methods In Computer Vision And Pattern Recognition |
Abbreviated Journal |
LNCS |
|
|
Volume |
2683 |
Issue |
|
Pages |
357-372 |
|
|
Keywords |
Initial condition; Convex shape; Non convex analysis; Increase; Segmentation; Gradient; Standard; Standards; Concave shape; Flow models; Tracking; Edge detection; Curvature |
|
|
Abstract |
Poor convergence to concave shapes is a main limitation of snakes as a standard segmentation and shape modelling technique. The gradient of the external energy of the snake represents a force that pushes the snake into concave regions, as its internal energy increases when new inexion points are created. In spite of the improvement of the external energy by the gradient vector ow technique, highly non convex shapes can not be obtained, yet. In the present paper, we develop a new external energy based on the geometry of the curve to be modelled. By tracking back the deformation of a curve that evolves by minimum curvature ow, we construct a distance map that encapsulates the natural way of adapting to non convex shapes. The gradient of this map, which we call curvature vector ow (CVF), is capable of attracting a snake towards any contour, whatever its geometry. Our experiments show that, any initial snake condition converges to the curve to be modelled in optimal time. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer, Berlin |
Place of Publication  |
Lisbon, PORTUGAL |
Editor |
Springer, B. |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
Lecture Notes in Computer Science |
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0302-9743 |
ISBN |
3-540-40498-8 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM;MILAB |
Approved |
no |
|
|
Call Number |
IAM @ iam @ GIR2003b |
Serial |
1535 |
|
Permanent link to this record |