toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
  Records Links
Author Carles Sanchez;F. Javier Sanchez; Antoni Rosell; Debora Gil edit   pdf
url  doi
isbn  openurl
  Title An illumination model of the trachea appearance in videobronchoscopy images Type Book Chapter
  Year 2012 Publication Image Analysis and Recognition Abbreviated Journal LNCS  
  Volume 7325 Issue Pages 313-320  
  Keywords Bronchoscopy, tracheal ring, stenosis assesment, trachea appearance model, segmentation  
  Abstract Videobronchoscopy is a medical imaging technique that allows interactive navigation inside the respiratory pathways. This imaging modality provides realistic images and allows non-invasive minimal intervention procedures. Tracheal procedures are routinary interventions that require assessment of the percentage of obstructed pathway for injury (stenosis) detection. Visual assessment in videobronchoscopic sequences requires high expertise of trachea anatomy and is prone to human error.
This paper introduces an automatic method for the estimation of steneosed trachea percentage reduction in videobronchoscopic images. We look for tracheal rings , whose deformation determines the degree of obstruction. For ring extraction , we present a ring detector based on an illumination and appearance model. This model allows us to parametrise the ring detection. Finally, we can infer optimal estimation parameters for any video resolution.
  Address Aveiro, Portugal  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-31297-7 Medium  
  Area 800 Expedition Conference ICIAR  
  Notes (up) MV;IAM Approved no  
  Call Number IAM @ iam @ SSR2012 Serial 1898  
Permanent link to this record

Author Fernando Vilariño; Debora Gil; Petia Radeva edit   pdf
url  isbn
  Title A Novel FLDA Formulation for Numerical Stability Analysis Type Book Chapter
  Year 2004 Publication Recent Advances in Artificial Intelligence Research and Development Abbreviated Journal  
  Volume 113 Issue Pages 77-84  
  Keywords Supervised Learning; Linear Discriminant Analysis; Numerical Stability; Computer Vision  
  Abstract Fisher Linear Discriminant Analysis (FLDA) is one of the most popular techniques used in classification applying dimensional reduction. The numerical scheme involves the inversion of the within-class scatter matrix, which makes FLDA potentially ill-conditioned when it becomes singular. In this paper we present a novel explicit formulation of FLDA in terms of the eccentricity ratio and eigenvector orientations of the within-class scatter matrix. An analysis of this function will characterize those situations where FLDA response is not reliable because of numerical instability. This can solve common situations of poor classification performance in computer vision.  
  Corporate Author Thesis  
  Publisher IOS Press Place of Publication Editor J. Vitrià, P. Radeva and I. Aguiló  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-58603-466-5 Medium  
  Area Expedition Conference  
  Notes (up) MV;IAM;MILAB Approved no  
  Call Number IAM @ iam @ VGR2004 Serial 1663  
Permanent link to this record
Select All    Deselect All
 |   | 

Save Citations:
Export Records: