toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author David Roche edit  openurl
  Title A Statistical Framework for Terminating Evolutionary Algorithms at their Steady State Type Book Whole
  Year 2015 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract As any iterative technique, it is a necessary condition a stop criterion for terminating Evolutionary Algorithms (EA). In the case of optimization methods, the algorithm should stop at the time it has reached a steady state so it can not improve results anymore. Assessing the reliability of termination conditions for EAs is of prime importance. A wrong or weak stop criterion can negatively a ect both the computational e ort and the nal result.
In this Thesis, we introduce a statistical framework for assessing whether a termination condition is able to stop EA at its steady state. In one hand a numeric approximation to steady states to detect the point in which EA population has lost its diversity has been presented for EA termination. This approximation has been applied to di erent EA paradigms based on diversity and a selection of functions covering the properties most relevant for EA convergence. Experiments show that our condition works regardless of the search space dimension and function landscape and Di erential Evolution (DE) arises as the best paradigm. On the other hand, we use a regression model in order to determine the requirements ensuring that a measure derived from EA evolving population is related to the distance to the optimum in xspace.
Our theoretical framework is analyzed across several benchmark test functions
and two standard termination criteria based on function improvement in f-space and EA population x-space distribution for the DE paradigm. Results validate our statistical framework as a powerful tool for determining the capability of a measure for terminating EA and select the x-space distribution as the best-suited for accurately stopping DE in real-world applications.
 
  Address July 2015  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Debora Gil; Jesus Giraldo  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (up) Medium  
  Area Expedition Conference  
  Notes IAM; 600.075 Approved no  
  Call Number Admin @ si @ Roc2015 Serial 2686  
Permanent link to this record
 

 
Author Debora Gil; F. Javier Sanchez; Gloria Fernandez-Esparrach; Jorge Bernal edit   pdf
doi  openurl
  Title 3D Stable Spatio-temporal Polyp Localization in Colonoscopy Videos Type Book Chapter
  Year 2015 Publication Computer-Assisted and Robotic Endoscopy. Revised selected papers of Second International Workshop, CARE 2015, Held in Conjunction with MICCAI 2015 Abbreviated Journal  
  Volume 9515 Issue Pages 140-152  
  Keywords Colonoscopy, Polyp Detection, Polyp Localization, Region Extraction, Watersheds  
  Abstract Computational intelligent systems could reduce polyp miss rate in colonoscopy for colon cancer diagnosis and, thus, increase the efficiency of the procedure. One of the main problems of existing polyp localization methods is a lack of spatio-temporal stability in their response. We propose to explore the response of a given polyp localization across temporal windows in order to select
those image regions presenting the highest stable spatio-temporal response.
Spatio-temporal stability is achieved by extracting 3D watershed regions on the
temporal window. Stability in localization response is statistically determined by analysis of the variance of the output of the localization method inside each 3D region. We have explored the benefits of considering spatio-temporal stability in two different tasks: polyp localization and polyp detection. Experimental results indicate an average improvement of 21:5% in polyp localization and 43:78% in polyp detection.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN (up) Medium  
  Area Expedition Conference CARE  
  Notes IAM; MV; 600.075 Approved no  
  Call Number Admin @ si @ GSF2015 Serial 2733  
Permanent link to this record
 

 
Author H. Martin ; Jens Fagertun; Sergio Vera; Debora Gil edit   pdf
openurl 
  Title Medial structure generation for registration of anatomical structures Type Book Chapter
  Year 2017 Publication Skeletonization, Theory, Methods and Applications Abbreviated Journal  
  Volume 11 Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (up) Medium  
  Area Expedition Conference  
  Notes IAM; 600.096; 600.075; 600.145 Approved no  
  Call Number Admin @ si @ MFV2017a Serial 2935  
Permanent link to this record
 

 
Author Debora Gil; Petia Radeva edit   pdf
url  doi
isbn  openurl
  Title Curvature Vector Flow to Assure Convergent Deformable Models for Shape Modelling Type Book Chapter
  Year 2003 Publication Energy Minimization Methods In Computer Vision And Pattern Recognition Abbreviated Journal LNCS  
  Volume 2683 Issue Pages 357-372  
  Keywords Initial condition; Convex shape; Non convex analysis; Increase; Segmentation; Gradient; Standard; Standards; Concave shape; Flow models; Tracking; Edge detection; Curvature  
  Abstract Poor convergence to concave shapes is a main limitation of snakes as a standard segmentation and shape modelling technique. The gradient of the external energy of the snake represents a force that pushes the snake into concave regions, as its internal energy increases when new inexion points are created. In spite of the improvement of the external energy by the gradient vector ow technique, highly non convex shapes can not be obtained, yet. In the present paper, we develop a new external energy based on the geometry of the curve to be modelled. By tracking back the deformation of a curve that evolves by minimum curvature ow, we construct a distance map that encapsulates the natural way of adapting to non convex shapes. The gradient of this map, which we call curvature vector ow (CVF), is capable of attracting a snake towards any contour, whatever its geometry. Our experiments show that, any initial snake condition converges to the curve to be modelled in optimal time.  
  Address  
  Corporate Author Thesis  
  Publisher Springer, Berlin Place of Publication Lisbon, PORTUGAL Editor Springer, B.  
  Language Summary Language Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN (up) 3-540-40498-8 Medium  
  Area Expedition Conference  
  Notes IAM;MILAB Approved no  
  Call Number IAM @ iam @ GIR2003b Serial 1535  
Permanent link to this record
 

 
Author Josep Llados; Ernest Valveny; Gemma Sanchez; Enric Marti edit   pdf
url  doi
isbn  openurl
  Title Symbol recognition: current advances and perspectives Type Book Chapter
  Year 2002 Publication Graphics Recognition Algorithms And Applications Abbreviated Journal LNCS  
  Volume 2390 Issue Pages 104-128  
  Keywords  
  Abstract The recognition of symbols in graphic documents is an intensive research activity in the community of pattern recognition and document analysis. A key issue in the interpretation of maps, engineering drawings, diagrams, etc. is the recognition of domain dependent symbols according to a symbol database. In this work we first review the most outstanding symbol recognition methods from two different points of view: application domains and pattern recognition methods. In the second part of the paper, open and unaddressed problems involved in symbol recognition are described, analyzing their current state of art and discussing future research challenges. Thus, issues such as symbol representation, matching, segmentation, learning, scalability of recognition methods and performance evaluation are addressed in this work. Finally, we discuss the perspectives of symbol recognition concerning to new paradigms such as user interfaces in handheld computers or document database and WWW indexing by graphical content.  
  Address London, UK  
  Corporate Author Thesis  
  Publisher Springer-Verlag Place of Publication Editor Dorothea Blostein and Young- Bin Kwon  
  Language Summary Language Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN (up) 3-540-44066-6 Medium  
  Area Expedition Conference GREC  
  Notes DAG; IAM; Approved no  
  Call Number IAM @ iam @ LVS2002 Serial 1572  
Permanent link to this record
 

 
Author Debora Gil edit   pdf
isbn  openurl
  Title Geometric Differential Operators for Shape Modelling Type Book Whole
  Year 2004 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Medical imaging feeds research in many computer vision and image processing fields: image filtering, segmentation, shape recovery, registration, retrieval and pattern matching. Because of their low contrast changes and large variety of artifacts and noise, medical imaging processing techniques relying on an analysis of the geometry of image level sets rather than on intensity values result in more robust treatment. From the starting point of treatment of intravascular images, this PhD thesis ad- dresses the design of differential image operators based on geometric principles for a robust shape modelling and restoration. Among all fields applying shape recovery, we approach filtering and segmentation of image objects. For a successful use in real images, the segmentation process should go through three stages: noise removing, shape modelling and shape recovery. This PhD addresses all three topics, but for the sake of algorithms as automated as possible, techniques for image processing will be designed to satisfy three main principles: a) convergence of the iterative schemes to non-trivial states avoiding image degeneration to a constant image and representing smooth models of the originals; b) smooth asymptotic behav- ior ensuring stabilization of the iterative process; c) fixed parameter values ensuring equal (domain free) performance of the algorithms whatever initial images/shapes. Our geometric approach to the generic equations that model the different processes approached enables defining techniques satisfying all the former requirements. First, we introduce a new curvature-based geometric flow for image filtering achieving a good compromise between noise removing and resemblance to original images. Sec- ond, we describe a new family of diffusion operators that restrict their scope to image level curves and serve to restore smooth closed models from unconnected sets of points. Finally, we design a regularization of snake (distance) maps that ensures its smooth convergence towards any closed shape. Experiments show that performance of the techniques proposed overpasses that of state-of-the-art algorithms.  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Barcelona (Spain) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (up) 84-933652-0-3 Medium prit  
  Area Expedition Conference  
  Notes IAM; Approved no  
  Call Number IAM @ iam @ GIL2004 Serial 1517  
Permanent link to this record
 

 
Author Enric Marti; Jordi Vitria; Alberto Sanfeliu edit   pdf
isbn  openurl
  Title Reconocimiento de Formas y Análisis de Imágenes Type Book Whole
  Year 1998 Publication Asociación Española de Reconocimientos de Formas y Análisis de Imágenes Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Los sistemas actuales de reconocimiento automático del lenguaje oral se basan en dos etapas básicas de procesado: la parametrización, que extrae la evolución temporal de los parámetros que caracterizan la voz, y el reconocimiento propiamente dicho, que identifica la cadena de palabras de la elocución recibida con ayuda de los modelos que representan el conocimiento adquirido en la etapa de aprendizaje. Tomando como línea divisoria la palabra, dichos modelos son de tipo acústicofonético o gramatical. Los primeros caracterizan las palabras incluidas en el vocabulario de la aplicación o tarea a la que está orientado el sistema de reconocimiento, usando a menudo para ello modelos de unidades de habla de extensión inferior a la palabra, es decir, de unidades subléxicas. Por otro lado, la gramática incluye el conocimiento acerca de las combinaciones permitidas de palabras para formar las frases o su probabilidad. Queda fuera del esquema la denominada comprensión del habla, que utiliza adicionalmente el conocimiento semántico y pragmático para captar el significado de la elocución de entrada al sistema a partir de la cadena (o cadenas alternativas) de palabras que suministra el reconocedor.  
  Address  
  Corporate Author Thesis  
  Publisher AERFAI Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (up) 84–922529–4–4 Medium  
  Area Expedition Conference  
  Notes IAM;OR;MV Approved no  
  Call Number IAM @ iam @ MVS1998 Serial 1620  
Permanent link to this record
 

 
Author Fernando Vilariño; Debora Gil; Petia Radeva edit   pdf
url  isbn
openurl 
  Title A Novel FLDA Formulation for Numerical Stability Analysis Type Book Chapter
  Year 2004 Publication Recent Advances in Artificial Intelligence Research and Development Abbreviated Journal  
  Volume 113 Issue Pages 77-84  
  Keywords Supervised Learning; Linear Discriminant Analysis; Numerical Stability; Computer Vision  
  Abstract Fisher Linear Discriminant Analysis (FLDA) is one of the most popular techniques used in classification applying dimensional reduction. The numerical scheme involves the inversion of the within-class scatter matrix, which makes FLDA potentially ill-conditioned when it becomes singular. In this paper we present a novel explicit formulation of FLDA in terms of the eccentricity ratio and eigenvector orientations of the within-class scatter matrix. An analysis of this function will characterize those situations where FLDA response is not reliable because of numerical instability. This can solve common situations of poor classification performance in computer vision.  
  Address  
  Corporate Author Thesis  
  Publisher IOS Press Place of Publication Editor J. Vitrià, P. Radeva and I. Aguiló  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (up) 978-1-58603-466-5 Medium  
  Area Expedition Conference  
  Notes MV;IAM;MILAB Approved no  
  Call Number IAM @ iam @ VGR2004 Serial 1663  
Permanent link to this record
 

 
Author Hanne Kause; Aura Hernandez-Sabate; Patricia Marquez; Andrea Fuster; Luc Florack; Hans van Assen; Debora Gil edit   pdf
doi  isbn
openurl 
  Title Confidence Measures for Assessing the HARP Algorithm in Tagged Magnetic Resonance Imaging Type Book Chapter
  Year 2015 Publication Statistical Atlases and Computational Models of the Heart. Revised selected papers of Imaging and Modelling Challenges 6th International Workshop, STACOM 2015, Held in Conjunction with MICCAI 2015 Abbreviated Journal  
  Volume 9534 Issue Pages 69-79  
  Keywords  
  Abstract Cardiac deformation and changes therein have been linked to pathologies. Both can be extracted in detail from tagged Magnetic Resonance Imaging (tMRI) using harmonic phase (HARP) images. Although point tracking algorithms have shown to have high accuracies on HARP images, these vary with position. Detecting and discarding areas with unreliable results is crucial for use in clinical support systems. This paper assesses the capability of two confidence measures (CMs), based on energy and image structure, for detecting locations with reduced accuracy in motion tracking results. These CMs were tested on a database of simulated tMRI images containing the most common artifacts that may affect tracking accuracy. CM performance is assessed based on its capability for HARP tracking error bounding and compared in terms of significant differences detected using a multi comparison analysis of variance that takes into account the most influential factors on HARP tracking performance. Results showed that the CM based on image structure was better suited to detect unreliable optical flow vectors. In addition, it was shown that CMs can be used to detect optical flow vectors with large errors in order to improve the optical flow obtained with the HARP tracking algorithm.  
  Address Munich; Germany; January 2015  
  Corporate Author Thesis  
  Publisher Springer International Publishing Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN (up) 978-3-319-28711-9 Medium  
  Area Expedition Conference STACOM  
  Notes ADAS; IAM; 600.075; 600.076; 600.060; 601.145 Approved no  
  Call Number Admin @ si @ KHM2015 Serial 2734  
Permanent link to this record
 

 
Author Debora Gil; Oriol Rodriguez-Leon; Petia Radeva; Aura Hernandez-Sabate edit   pdf
doi  isbn
openurl 
  Title Assessing Artery Motion Compensation in IVUS Type Book Chapter
  Year 2007 Publication Computer Analysis Of Images And Patterns Abbreviated Journal LNCS  
  Volume 4673 Issue Pages 213-220  
  Keywords validation standards; quality measures; IVUS motion compensation; conservation laws; Fourier development  
  Abstract Cardiac dynamics suppression is a main issue for visual improvement and computation of tissue mechanical properties in IntraVascular UltraSound (IVUS). Although in recent times several motion compensation techniques have arisen, there is a lack of objective evaluation of motion reduction in in vivo pullbacks. We consider that the assessment protocol deserves special attention for the sake of a clinical applicability as reliable as possible. Our work focuses on defining a quality measure and a validation protocol assessing IVUS motion compensation. On the grounds of continuum mechanics laws we introduce a novel score measuring motion reduction in in vivo sequences. Synthetic experiments validate the proposed score as measure of motion parameters accuracy; while results in in vivo pullbacks show its reliability in clinical cases.  
  Address  
  Corporate Author Thesis  
  Publisher Springerlink Place of Publication Heidelberg Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (up) 978-3-540-74271-5 Medium  
  Area Expedition Conference  
  Notes IAM;MILAB Approved no  
  Call Number IAM @ iam @ GRR2007 Serial 1540  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: