toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Ferran Poveda; Jaume Garcia; Enric Marti; Debora Gil edit   pdf
openurl 
  Title Validation of the myocardial architecture in DT-MRI tractography Type Conference Article
  Year (down) 2010 Publication Medical Image Computing in Catalunya: Graduate Student Workshop Abbreviated Journal  
  Volume Issue Pages 29-30  
  Keywords  
  Abstract Deep understanding of myocardial structure may help to link form and funcion of the heart unraveling crucial knowledge for medical and surgical clinical procedures and studies. In this work we introduce two visualization techniques based on DT-MRI streamlining able to decipher interesting properties of the architectural organization of the heart.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Girona (Spain) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MICCAT  
  Notes IAM Approved no  
  Call Number IAM @ iam @ PGM2010 Serial 1626  
Permanent link to this record
 

 
Author Jaume Garcia; Albert Andaluz; Debora Gil; Francesc Carreras edit   pdf
url  doi
isbn  openurl
  Title Decoupled External Forces in a Predictor-Corrector Segmentation Scheme for LV Contours in Tagged MR Images Type Conference Article
  Year (down) 2010 Publication 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society Abbreviated Journal  
  Volume Issue Pages 4805-4808  
  Keywords  
  Abstract Computation of functional regional scores requires proper identification of LV contours. On one hand, manual segmentation is robust, but it is time consuming and requires high expertise. On the other hand, the tag pattern in TMR sequences is a problem for automatic segmentation of LV boundaries. We propose a segmentation method based on a predictorcorrector (Active Contours – Shape Models) scheme. Special stress is put in the definition of the AC external forces. First, we introduce a semantic description of the LV that discriminates myocardial tissue by using texture and motion descriptors. Second, in order to ensure convergence regardless of the initial contour, the external energy is decoupled according to the orientation of the edges in the image potential. We have validated the model in terms of error in segmented contours and accuracy of regional clinical scores.  
  Address Buenos Aires (Argentina)  
  Corporate Author IEEE EMB Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1557-170X ISBN 978-1-4244-4123-5 Medium  
  Area Expedition Conference EMBC  
  Notes IAM Approved no  
  Call Number IAM @ iam @ GAG2010 Serial 1514  
Permanent link to this record
 

 
Author Jaume Garcia; Debora Gil; Aura Hernandez-Sabate edit   pdf
doi  openurl
  Title Endowing Canonical Geometries to Cardiac Structures Type Book Chapter
  Year (down) 2010 Publication Statistical Atlases And Computational Models Of The Heart Abbreviated Journal  
  Volume 6364 Issue Pages 124-133  
  Keywords  
  Abstract International conference on Cardiac electrophysiological simulation challenge
In this paper, we show that canonical (shape-based) geometries can be endowed to cardiac structures using tubular coordinates defined over their medial axis. We give an analytic formulation of these geometries by means of B-Splines. Since B-Splines present vector space structure PCA can be applied to their control points and statistical models relating boundaries and the interior of the anatomical structures can be derived. We demonstrate the applicability in two cardiac structures, the 3D Left Ventricular volume, and the 2D Left-Right ventricle set in 2D Short Axis view.
 
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin / Heidelberg Place of Publication Editor Camara, O.; Pop, M.; Rhode, K.; Sermesant, M.; Smith, N.; Young, A.  
  Language Summary Language Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number IAM @ iam @ GGH2010b Serial 1515  
Permanent link to this record
 

 
Author Jaume Garcia; Debora Gil; Luis Badiella; Aura Hernandez-Sabate; Francesc Carreras; Sandra Pujades; Enric Marti edit   pdf
doi  openurl
  Title A Normalized Framework for the Design of Feature Spaces Assessing the Left Ventricular Function Type Journal Article
  Year (down) 2010 Publication IEEE Transactions on Medical Imaging Abbreviated Journal TMI  
  Volume 29 Issue 3 Pages 733-745  
  Keywords  
  Abstract A through description of the left ventricle functionality requires combining complementary regional scores. A main limitation is the lack of multiparametric normality models oriented to the assessment of regional wall motion abnormalities (RWMA). This paper covers two main topics involved in RWMA assessment. We propose a general framework allowing the fusion and comparison across subjects of different regional scores. Our framework is used to explore which combination of regional scores (including 2-D motion and strains) is better suited for RWMA detection. Our statistical analysis indicates that for a proper (within interobserver variability) identification of RWMA, models should consider motion and extreme strains.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0278-0062 ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number IAM @ iam @ GGH2010b Serial 1507  
Permanent link to this record
 

 
Author Maurizio Mencuccini; Jordi Martinez-Vilalta; Josep Piñol; Lasse Loepfe; Mireia Burnat ; Xavier Alvarez; Juan Camacho; Debora Gil edit   pdf
url  doi
openurl 
  Title A quantitative and statistically robust method for the determination of xylem conduit spatial distribution Type Journal Article
  Year (down) 2010 Publication American Journal of Botany Abbreviated Journal AJB  
  Volume 97 Issue 8 Pages 1247-1259  
  Keywords Geyer; hydraulic conductivity; point pattern analysis; Ripley; Spatstat; vessel clusters; xylem anatomy; xylem network  
  Abstract Premise of the study: Because of their limited length, xylem conduits need to connect to each other to maintain water transport from roots to leaves. Conduit spatial distribution in a cross section plays an important role in aiding this connectivity. While indices of conduit spatial distribution already exist, they are not well defined statistically. * Methods: We used point pattern analysis to derive new spatial indices. One hundred and five cross-sectional images from different species were transformed into binary images. The resulting point patterns, based on the locations of the conduit centers-of-area, were analyzed to determine whether they departed from randomness. Conduit distribution was then modeled using a spatially explicit stochastic model. * Key results: The presence of conduit randomness, uniformity, or aggregation depended on the spatial scale of the analysis. The large majority of the images showed patterns significantly different from randomness at least at one spatial scale. A strong phylogenetic signal was detected in the spatial variables. * Conclusions: Conduit spatial arrangement has been largely conserved during evolution, especially at small spatial scales. Species in which conduits were aggregated in clusters had a lower conduit density compared to those with uniform distribution. Statistically sound spatial indices must be employed as an aid in the characterization of distributional patterns across species and in models of xylem water transport. Point pattern analysis is a very useful tool in identifying spatial patterns.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; Approved no  
  Call Number IAM @ iam @ MMG2010 Serial 1623  
Permanent link to this record
 

 
Author Patricia Marquez edit   pdf
openurl 
  Title Conditions Ensuring Accuracy of Local Optical Flow Schemes Type Report
  Year (down) 2010 Publication CVC Tehcnical Report Abbreviated Journal  
  Volume 157 Issue Pages  
  Keywords  
  Abstract Accurate computation of optical flow is a key-point in many image processing fields. Detection of anomalous and unpredicted agents (such as pedestrians, bikers or cars) in urban scenes or pathology discrimination in medical imaging sequences, to mention just a two. The above kinds sequences present two main difficulties for standard optical flow techniques. On one hand, variability in acquisition conditions (illuminance, medical imaging modality, ...) force an alterantive representation for images fulfilling the britghtness constancy constrain. On the hand, current variational schemes produce oversmoothed fields unable to properly model discontinuous behaviours such as collisions or functionless pathological areas. This master project explores the abilities and limitations of local and global optical flow approaches. The master student will put especial emphasis in the theoretical grounds behind in order to design a variational framework combining the theoretical advantages of the considered techniques. In particular an optical flow based on Gabor phase tracking (developed in the group for medical imaging) will be generalized to urban scenes.  
  Address  
  Corporate Author Thesis Master's thesis  
  Publisher Place of Publication Bellaterra 08193, Barcelona, Spain Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; Approved no  
  Call Number IAM @ iam @ Mar2010 Serial 1582  
Permanent link to this record
 

 
Author Sergio Vera edit   pdf
openurl 
  Title Finger joint modelling from hand X-ray images for assessing rheumatoid arthritis Type Report
  Year (down) 2010 Publication CVC Technical Report Abbreviated Journal  
  Volume 164 Issue Pages  
  Keywords Rheumatoid arthritis; joint detection; X-ray; Van der Heijde score  
  Abstract Rheumatoid arthritis is an autoimmune, systemic, inflammatory disorder that mainly af- fects bone joints. While there is no cure for this disease, continuous advances on palliative treatments require frequent verification of patient’s illness evolution. Such evolution is mea- sured through several available semi-quantitative methods that require evaluation of hand and foot X-ray images. Accurate assessment is a time consuming task that requires highly trained personnel. This hinders a generalized use in clinical practice for early diagnose and disease follow-up. In the context of the automatization of such evaluation methods we present a method for detection and characterization of finger joints in hand radiography images. Several measures for assessing the reduction of joint space width are proposed. We compare for the first time such measures to the Van der Heijde score, the gold standard method for rheumatoid arthritis assessment. The proposed method outperforms existing strategies with a detection rate above 95%. Our comparison to Van der Heijde index shows a promising correlation that encourages further research.  
  Address  
  Corporate Author Thesis Master's thesis  
  Publisher Place of Publication Bellaterra 01893, Barcelona, Spain Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number IAM @ iam @ Ver2010 Serial 1661  
Permanent link to this record
 

 
Author Albert Andaluz edit   pdf
openurl 
  Title LV Contour Segmentation in TMR images using Semantic Description of Tissue and Prior Knowledge Correction Type Report
  Year (down) 2009 Publication CVC Technical Report Abbreviated Journal  
  Volume 142 Issue Pages  
  Keywords Active Contour Models; Snakes; Active Shape Models; Deformable Templates; Left Ventricle Segmentation; Generalized Orthogonal Procrustes Analysis; Harmonic Phase Flow; Principal Component Analysis; Tagged Magnetic Resonance  
  Abstract The Diagnosis of Left Ventricle (LV) pathologies is related to regional wall motion analysis. Health indicator scores such as the rotation and the torsion are useful for the diagnose of the Left Ventricle (LV) function. However, this requires proper identification of LV segments. On one hand, manual segmentation is robust, but it is slow and requires medical expertise. On the other hand, the tag pattern in Tagged Magnetic Resonance (TMR) sequences is a problem for the automatic segmentation of the LV boundaries. Consequently, we propose a method based in the classical formulation of parametric Snakes, combined with Active Shape models. Our semantic definition of the LV is tagged tissue that experiences motion in the systolic cycle. This defines two energy potentials for the Snake convergence. Additionally, the mean shape corrects excessive deviation from the anatomical shape. We have validated our approach in 15 healthy volunteers and two short axis cuts. In this way, we have compared the automatic segmentations to manual shapes outlined by medical experts. Also, we have explored the accuracy of clinical scores computed using automatic contours. The results show minor divergence in the approximation and the manual segmentations as well as robust computation of clinical scores in all cases. From this we conclude that the proposed method is a promising support tool for clinical analysis.  
  Address  
  Corporate Author Thesis Master's thesis  
  Publisher Place of Publication Bellaterra 08193, Barcelona, Spain Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; Approved no  
  Call Number IAM @ iam @ And2009 Serial 1667  
Permanent link to this record
 

 
Author Aura Hernandez-Sabate edit   pdf
isbn  openurl
  Title Exploring Arterial Dynamics and Structures in IntraVascular Ultrasound Sequences Type Book Whole
  Year (down) 2009 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Cardiovascular diseases are a leading cause of death in developed countries. Most of them are caused by arterial (specially coronary) diseases, mainly caused by plaque accumulation. Such pathology narrows blood flow (stenosis) and affects artery bio- mechanical elastic properties (atherosclerosis). In the last decades, IntraVascular UltraSound (IVUS) has become a usual imaging technique for the diagnosis and follow up of arterial diseases. IVUS is a catheter-based imaging technique which shows a sequence of cross sections of the artery under study. Inspection of a single image gives information about the percentage of stenosis. Meanwhile, inspection of longitudinal views provides information about artery bio-mechanical properties, which can prevent a fatal outcome of the cardiovascular disease. On one hand, dynamics of arteries (due to heart pumping among others) is a major artifact for exploring tissue bio-mechanical properties. On the other one, manual stenosis measurements require a manual tracing of vessel borders, which is a time-consuming task and might suffer from inter-observer variations. This PhD thesis proposes several image processing tools for exploring vessel dy- namics and structures. We present a physics-based model to extract, analyze and correct vessel in-plane rigid dynamics and to retrieve cardiac phase. Furthermore, we introduce a deterministic-statistical method for automatic vessel borders detection. In particular, we address adventitia layer segmentation. An accurate validation pro- tocol to ensure reliable clinical applicability of the methods is a crucial step in any proposal of an algorithm. In this thesis we take special care in designing a valida- tion protocol for each approach proposed and we contribute to the in vivo dynamics validation with a quantitative and objective score to measure the amount of motion suppressed.  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Debora Gil  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-937261-6-4 Medium  
  Area Expedition Conference  
  Notes IAM; Approved no  
  Call Number IAM @ iam @ Her2009 Serial 1543  
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Debora Gil;Eduard Fernandez-Nofrerias;Petia Radeva; Enric Marti edit   pdf
doi  openurl
  Title Approaching Artery Rigid Dynamics in IVUS Type Journal Article
  Year (down) 2009 Publication IEEE Transactions on Medical Imaging Abbreviated Journal TMI  
  Volume 28 Issue 11 Pages 1670-1680  
  Keywords Fourier analysis; intravascular ultrasound (IVUS) dynamics; longitudinal motion; quality measures; tissue deformation.  
  Abstract Tissue biomechanical properties (like strain and stress) are playing an increasing role in diagnosis and long-term treatment of intravascular coronary diseases. Their assessment strongly relies on estimation of vessel wall deformation. Since intravascular ultrasound (IVUS) sequences allow visualizing vessel morphology and reflect its dynamics, this technique represents a useful tool for evaluation of tissue mechanical properties. Image misalignment introduced by vessel-catheter motion is a major artifact for a proper tracking of tissue deformation. In this work, we focus on compensating and assessing IVUS rigid in-plane motion due to heart beating. Motion parameters are computed by considering both the vessel geometry and its appearance in the image. Continuum mechanics laws serve to introduce a novel score measuring motion reduction in in vivo sequences. Synthetic experiments validate the proposed score as measure of motion parameters accuracy; whereas results in in vivo pullbacks show the reliability of the presented methodologies in clinical cases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0278-0062 ISBN Medium  
  Area Expedition Conference  
  Notes IAM; MILAB Approved no  
  Call Number IAM @ iam @ HGF2009 Serial 1545  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: