|
Records |
Links |
|
Author |
Ernest Valveny; Enric Marti |


|
|
Title  |
Deformable Template Matching within a Bayesian Framework for Hand-Written Graphic Symbol Recognition |
Type |
Journal Article |
|
Year |
2000 |
Publication |
Graphics Recognition Recent Advances |
Abbreviated Journal |
|
|
|
Volume |
1941 |
Issue |
|
Pages |
193-208 |
|
|
Keywords |
|
|
|
Abstract |
We describe a method for hand-drawn symbol recognition based on deformable template matching able to handle uncertainty and imprecision inherent to hand-drawing. Symbols are represented as a set of straight lines and their deformations as geometric transformations of these lines. Matching, however, is done over the original binary image to avoid loss of information during line detection. It is defined as an energy minimization problem, using a Bayesian framework which allows to combine fidelity to ideal shape of the symbol and flexibility to modify the symbol in order to get the best fit to the binary input image. Prior to matching, we find the best global transformation of the symbol to start the recognition process, based on the distance between symbol lines and image lines. We have applied this method to the recognition of dimensions and symbols in architectural floor plans and we show its flexibility to recognize distorted symbols. |
|
|
Address |
|
|
|
Corporate Author |
Springer Verlag |
Thesis |
|
|
|
Publisher |
Springer Verlag |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG;IAM; |
Approved |
no |
|
|
Call Number |
IAM @ iam @ MVA2000 |
Serial |
1655 |
|
Permanent link to this record |
|
|
|
|
Author |
David Roche; Debora Gil; Jesus Giraldo |


|
|
Title  |
Detecting loss of diversity for an efficient termination of EAs |
Type |
Conference Article |
|
Year |
2013 |
Publication |
15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
561 - 566 |
|
|
Keywords |
EA termination; EA population diversity; EA steady state |
|
|
Abstract |
Termination of Evolutionary Algorithms (EA) at its steady state so that useless iterations are not performed is a main point for its efficient application to black-box problems. Many EA algorithms evolve while there is still diversity in their population and, thus, they could be terminated by analyzing the behavior some measures of EA population diversity. This paper presents a numeric approximation to steady states that can be used to detect the moment EA population has lost its diversity for EA termination. Our condition has been applied to 3 EA paradigms based on diversity and a selection of functions
covering the properties most relevant for EA convergence.
Experiments show that our condition works regardless of the search space dimension and function landscape. |
|
|
Address |
Timisoara; Rumania; |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-1-4799-3035-7 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
SYNASC |
|
|
Notes |
IAM; 600.044; 600.060; 605.203 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RGG2013c |
Serial |
2299 |
|
Permanent link to this record |
|
|
|
|
Author |
Jose Elias Yauri; M. Lagos; H. Vega-Huerta; P. de-la-Cruz; G.L.E Maquen-Niño; E. Condor-Tinoco |

|
|
Title  |
Detection of Epileptic Seizures Based-on Channel Fusion and Transformer Network in EEG Recordings |
Type |
Journal Article |
|
Year |
2023 |
Publication |
International Journal of Advanced Computer Science and Applications |
Abbreviated Journal |
IJACSA |
|
|
Volume |
14 |
Issue |
5 |
Pages |
1067-1074 |
|
|
Keywords |
Epilepsy; epilepsy detection; EEG; EEG channel fusion; convolutional neural network; self-attention |
|
|
Abstract |
According to the World Health Organization, epilepsy affects more than 50 million people in the world, and specifically, 80% of them live in developing countries. Therefore, epilepsy has become among the major public issue for many governments and deserves to be engaged. Epilepsy is characterized by uncontrollable seizures in the subject due to a sudden abnormal functionality of the brain. Recurrence of epilepsy attacks change people’s lives and interferes with their daily activities. Although epilepsy has no cure, it could be mitigated with an appropriated diagnosis and medication. Usually, epilepsy diagnosis is based on the analysis of an electroencephalogram (EEG) of the patient. However, the process of searching for seizure patterns in a multichannel EEG recording is a visual demanding and time consuming task, even for experienced neurologists. Despite the recent progress in automatic recognition of epilepsy, the multichannel nature of EEG recordings still challenges current methods. In this work, a new method to detect epilepsy in multichannel EEG recordings is proposed. First, the method uses convolutions to perform channel fusion, and next, a self-attention network extracts temporal features to classify between interictal and ictal epilepsy states. The method was validated in the public CHB-MIT dataset using the k-fold cross-validation and achieved 99.74% of specificity and 99.15% of sensitivity, surpassing current approaches. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM |
Approved |
no |
|
|
Call Number |
Admin @ si @ |
Serial |
3856 |
|
Permanent link to this record |
|
|
|
|
Author |
Pau Cano; Alvaro Caravaca; Debora Gil; Eva Musulen |


|
|
Title  |
Diagnosis of Helicobacter pylori using AutoEncoders for the Detection of Anomalous Staining Patterns in Immunohistochemistry Images |
Type |
Miscellaneous |
|
Year |
2023 |
Publication |
Arxiv |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
107241 |
|
|
Keywords |
|
|
|
Abstract |
This work addresses the detection of Helicobacter pylori a bacterium classified since 1994 as class 1 carcinogen to humans. By its highest specificity and sensitivity, the preferred diagnosis technique is the analysis of histological images with immunohistochemical staining, a process in which certain stained antibodies bind to antigens of the biological element of interest. This analysis is a time demanding task, which is currently done by an expert pathologist that visually inspects the digitized samples.
We propose to use autoencoders to learn latent patterns of healthy tissue and detect H. pylori as an anomaly in image staining. Unlike existing classification approaches, an autoencoder is able to learn patterns in an unsupervised manner (without the need of image annotations) with high performance. In particular, our model has an overall 91% of accuracy with 86\% sensitivity, 96% specificity and 0.97 AUC in the detection of H. pylori. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM |
Approved |
no |
|
|
Call Number |
Admin @ si @ CCG2023 |
Serial |
3855 |
|
Permanent link to this record |
|
|
|
|
Author |
Ernest Valveny; Enric Marti |

|
|
Title  |
Dimensions analysis in hand-drawn architectural drawings |
Type |
Conference Article |
|
Year |
1997 |
Publication |
(SNRFAI’97) 7th Spanish National Symposium on Pattern Recognition and Image Analysis |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
90-91 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
CVC-UAB |
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG;IAM; |
Approved |
no |
|
|
Call Number |
IAM @ iam @ VAM1997 |
Serial |
1659 |
|
Permanent link to this record |
|
|
|
|
Author |
Jorge Bernal; Debora Gil; Carles Sanchez; F. Javier Sanchez |


|
|
Title  |
Discarding Non Informative Regions for Efficient Colonoscopy Image Analysis |
Type |
Conference Article |
|
Year |
2014 |
Publication |
1st MICCAI Workshop on Computer-Assisted and Robotic Endoscopy |
Abbreviated Journal |
|
|
|
Volume |
8899 |
Issue |
|
Pages |
1-10 |
|
|
Keywords |
Image Segmentation; Polyps, Colonoscopy; Valley Information; Energy Maps |
|
|
Abstract |
In this paper we present a novel polyp region segmentation method for colonoscopy videos. Our method uses valley information associated to polyp boundaries in order to provide an initial segmentation. This first segmentation is refined to eliminate boundary discontinuities caused by image artifacts or other elements of the scene. Experimental results over a publicly annotated database show that our method outperforms both general and specific segmentation methods by providing more accurate regions rich in polyp content. We also prove how image preprocessing is needed to improve final polyp region segmentation. |
|
|
Address |
Boston; USA; September 2014 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer International Publishing |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0302-9743 |
ISBN |
978-3-319-13409-3 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CARE |
|
|
Notes |
MV; IAM; 600.044; 600.047; 600.060; 600.075 |
Approved |
no |
|
|
Call Number |
Admin @ si @ BGS2014b |
Serial |
2503 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; Aura Hernandez-Sabate; Julien Enconniere; Saryani Asmayawati; Pau Folch; Juan Borrego-Carazo; Miquel Angel Piera |

|
|
Title  |
E-Pilots: A System to Predict Hard Landing During the Approach Phase of Commercial Flights |
Type |
Journal Article |
|
Year |
2022 |
Publication |
IEEE Access |
Abbreviated Journal |
ACCESS |
|
|
Volume |
10 |
Issue |
|
Pages |
7489-7503 |
|
|
Keywords |
|
|
|
Abstract |
More than half of all commercial aircraft operation accidents could have been prevented by executing a go-around. Making timely decision to execute a go-around manoeuvre can potentially reduce overall aviation industry accident rate. In this paper, we describe a cockpit-deployable machine learning system to support flight crew go-around decision-making based on the prediction of a hard landing event.
This work presents a hybrid approach for hard landing prediction that uses features modelling temporal dependencies of aircraft variables as inputs to a neural network. Based on a large dataset of 58177 commercial flights, the results show that our approach has 85% of average sensitivity with 74% of average specificity at the go-around point. It follows that our approach is a cockpit-deployable recommendation system that outperforms existing approaches. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; 600.139; 600.118; 600.145 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GHE2022 |
Serial |
3721 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; Katerine Diaz; Carles Sanchez; Aura Hernandez-Sabate |


|
|
Title  |
Early Screening of SARS-CoV-2 by Intelligent Analysis of X-Ray Images |
Type |
Miscellaneous |
|
Year |
2020 |
Publication |
Arxiv |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Future SARS-CoV-2 virus outbreak COVID-XX might possibly occur during the next years. However the pathology in humans is so recent that many clinical aspects, like early detection of complications, side effects after recovery or early screening, are currently unknown. In spite of the number of cases of COVID-19, its rapid spread putting many sanitary systems in the edge of collapse has hindered proper collection and analysis of the data related to COVID-19 clinical aspects. We describe an interdisciplinary initiative that integrates clinical research, with image diagnostics and the use of new technologies such as artificial intelligence and radiomics with the aim of clarifying some of SARS-CoV-2 open questions. The whole initiative addresses 3 main points: 1) collection of standardize data including images, clinical data and analytics; 2) COVID-19 screening for its early diagnosis at primary care centers; 3) define radiomic signatures of COVID-19 evolution and associated pathologies for the early treatment of complications. In particular, in this paper we present a general overview of the project, the experimental design and first results of X-ray COVID-19 detection using a classic approach based on HoG and feature selection. Our experiments include a comparison to some recent methods for COVID-19 screening in X-Ray and an exploratory analysis of the feasibility of X-Ray COVID-19 screening. Results show that classic approaches can outperform deep-learning methods in this experimental setting, indicate the feasibility of early COVID-19 screening and that non-COVID infiltration is the group of patients most similar to COVID-19 in terms of radiological description of X-ray. Therefore, an efficient COVID-19 screening should be complemented with other clinical data to better discriminate these cases. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; 600.139; 600.145; 601.337 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GDS2020 |
Serial |
3474 |
|
Permanent link to this record |
|
|
|
|
Author |
Oriol Rodriguez-Leor; J. Mauri; Eduard Fernandez-Nofrerias; M. Gomez; Antonio Tovar; L. Cano; C. Diego; Carme Julia; Vicente del Valle; Debora Gil; Petia Radeva |

|
|
Title  |
Ecografia Intracoronaria: Segmentacio Automatica de area de la llum |
Type |
Journal |
|
Year |
2002 |
Publication |
Revista Societat Catalana de Cardiologia |
Abbreviated Journal |
|
|
|
Volume |
4 |
Issue |
4 |
Pages |
42 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
Barcelona |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
XIVe Congres de la Societat Catalana de Cardiologia |
|
|
Notes |
MILAB;IAM |
Approved |
no |
|
|
Call Number |
BCNPCL @ bcnpcl @ RMF2002 |
Serial |
435 |
|
Permanent link to this record |
|
|
|
|
Author |
Oriol Rodriguez-Leor; J. Mauri; Eduard Fernandez-Nofrerias; M. Gomez; Antonio Tovar; L. Cano; C. Diego; Carme Julia; Vicente del Valle; Debora Gil; Petia Radeva |

|
|
Title  |
Ecografia Intracoronària: Segmentació Automàtica de area de la llum |
Type |
Conference Article |
|
Year |
2002 |
Publication |
XXXVIII Congreso Nacional de la Sociedad Española de Cardiología. |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM;ADAS;MILAB |
Approved |
no |
|
|
Call Number |
IAM @ iam @ RMF2002 |
Serial |
1638 |
|
Permanent link to this record |