|
Records |
Links |
|
Author |
Joel Barajas; Jaume Garcia; Karla Lizbeth Caballero; Francesc Carreras; Sandra Pujades; Petia Radeva |


|
|
Title  |
Correction of Misalignment Artifacts Among 2-D Cardiac MR Images in 3-D Space |
Type |
Conference Article |
|
Year |
2006 |
Publication |
1st International Wokshop on Computer Vision for Intravascular and Intracardiac Imaging (CVII’06) |
Abbreviated Journal |
|
|
|
Volume |
3217 |
Issue |
|
Pages |
114-121 |
|
|
Keywords |
|
|
|
Abstract |
Cardiac Magnetic Resonance images offer the opportunity to study the heart in detail. One of the main issues in its modelling is to create an accurate 3-D reconstruction of the left ventricle from 2-D views. A first step to achieve this goal is the correct registration among the different image planes due to patient movements. In this article, we present an accurate method to correct displacement artifacts using the Normalized Mutual Information. Here, the image views are treated as planes in order to diminish the approximation error caused by the association of a certain thickness, and moved simultaneously to avoid any kind of bias in the alignment process. This method has been validated using real and syntectic plane displacements, yielding promising results. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
Copenhagen (Denmark) |
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-3-540-22977-3 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM;MILAB |
Approved |
no |
|
|
Call Number |
IAM @ iam @ BGC2006 |
Serial |
1485 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; Petia Radeva |

|
|
Title  |
Curvature based Distance Maps |
Type |
Report |
|
Year |
2003 |
Publication |
CVC Technical Report |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
70 |
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Computer Vision Center |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM;MILAB |
Approved |
no |
|
|
Call Number |
IAM @ iam @ GIR2003a |
Serial |
1534 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; Petia Radeva |



|
|
Title  |
Curvature Vector Flow to Assure Convergent Deformable Models for Shape Modelling |
Type |
Book Chapter |
|
Year |
2003 |
Publication |
Energy Minimization Methods In Computer Vision And Pattern Recognition |
Abbreviated Journal |
LNCS |
|
|
Volume |
2683 |
Issue |
|
Pages |
357-372 |
|
|
Keywords |
Initial condition; Convex shape; Non convex analysis; Increase; Segmentation; Gradient; Standard; Standards; Concave shape; Flow models; Tracking; Edge detection; Curvature |
|
|
Abstract |
Poor convergence to concave shapes is a main limitation of snakes as a standard segmentation and shape modelling technique. The gradient of the external energy of the snake represents a force that pushes the snake into concave regions, as its internal energy increases when new inexion points are created. In spite of the improvement of the external energy by the gradient vector ow technique, highly non convex shapes can not be obtained, yet. In the present paper, we develop a new external energy based on the geometry of the curve to be modelled. By tracking back the deformation of a curve that evolves by minimum curvature ow, we construct a distance map that encapsulates the natural way of adapting to non convex shapes. The gradient of this map, which we call curvature vector ow (CVF), is capable of attracting a snake towards any contour, whatever its geometry. Our experiments show that, any initial snake condition converges to the curve to be modelled in optimal time. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer, Berlin |
Place of Publication |
Lisbon, PORTUGAL |
Editor |
Springer, B. |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
Lecture Notes in Computer Science |
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0302-9743 |
ISBN |
3-540-40498-8 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM;MILAB |
Approved |
no |
|
|
Call Number |
IAM @ iam @ GIR2003b |
Serial |
1535 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; Aura Hernandez-Sabate; David Castells; Jordi Carrabina |


|
|
Title  |
CYBERH: Cyber-Physical Systems in Health for Personalized Assistance |
Type |
Conference Article |
|
Year |
2017 |
Publication |
International Symposium on Symbolic and Numeric Algorithms for Scientific Computing |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Assistance systems for e-Health applications have some specific requirements that demand of new methods for data gathering, analysis and modeling able to deal with SmallData:
1) systems should dynamically collect data from, both, the environment and the user to issue personalized recommendations; 2) data analysis should be able to tackle a limited number of samples prone to include non-informative data and possibly evolving in time due to changes in patient condition; 3) algorithms should run in real time with possibly limited computational resources and fluctuant internet access.
Electronic medical devices (and CyberPhysical devices in general) can enhance the process of data gathering and analysis in several ways: (i) acquiring simultaneously multiple sensors data instead of single magnitudes (ii) filtering data; (iii) providing real-time implementations condition by isolating tasks in individual processors of multiprocessors Systems-on-chip (MPSoC) platforms and (iv) combining information through sensor fusion
techniques.
Our approach focus on both aspects of the complementary role of CyberPhysical devices and analysis of SmallData in the process of personalized models building for e-Health applications. In particular, we will address the design of Cyber-Physical Systems in Health for Personalized Assistance (CyberHealth) in two specific application cases: 1) A Smart Assisted Driving System (SADs) for dynamical assessment of the driving capabilities of Mild Cognitive Impaired (MCI) people; 2) An Intelligent Operating Room (iOR) for improving the yield of bronchoscopic interventions for in-vivo lung cancer diagnosis. |
|
|
Address |
Timisoara; Rumania; September 2017 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
SYNASC |
|
|
Notes |
IAM; 600.085; 600.096; 600.075; 600.145 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GHC2017 |
Serial |
3045 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; Antonio Esteban Lansaque; Sebastian Stefaniga; Mihail Gaianu; Carles Sanchez |


|
|
Title  |
Data Augmentation from Sketch |
Type |
Conference Article |
|
Year |
2019 |
Publication |
International Workshop on Uncertainty for Safe Utilization of Machine Learning in Medical Imaging |
Abbreviated Journal |
|
|
|
Volume |
11840 |
Issue |
|
Pages |
155-162 |
|
|
Keywords |
Data augmentation; cycleGANs; Multi-objective optimization |
|
|
Abstract |
State of the art machine learning methods need huge amounts of data with unambiguous annotations for their training. In the context of medical imaging this is, in general, a very difficult task due to limited access to clinical data, the time required for manual annotations and variability across experts. Simulated data could serve for data augmentation provided that its appearance was comparable to the actual appearance of intra-operative acquisitions. Generative Adversarial Networks (GANs) are a powerful tool for artistic style transfer, but lack a criteria for selecting epochs ensuring also preservation of intra-operative content.
We propose a multi-objective optimization strategy for a selection of cycleGAN epochs ensuring a mapping between virtual images and the intra-operative domain preserving anatomical content. Our approach has been applied to simulate intra-operative bronchoscopic videos and chest CT scans from virtual sketches generated using simple graphical primitives. |
|
|
Address |
Shenzhen; China; October 2019 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CLIP |
|
|
Notes |
IAM; 600.145; 601.337; 600.139; 600.145 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GES2019 |
Serial |
3359 |
|
Permanent link to this record |
|
|
|
|
Author |
Jaume Garcia; Albert Andaluz; Debora Gil; Francesc Carreras |



|
|
Title  |
Decoupled External Forces in a Predictor-Corrector Segmentation Scheme for LV Contours in Tagged MR Images |
Type |
Conference Article |
|
Year |
2010 |
Publication |
32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
4805-4808 |
|
|
Keywords |
|
|
|
Abstract |
Computation of functional regional scores requires proper identification of LV contours. On one hand, manual segmentation is robust, but it is time consuming and requires high expertise. On the other hand, the tag pattern in TMR sequences is a problem for automatic segmentation of LV boundaries. We propose a segmentation method based on a predictorcorrector (Active Contours – Shape Models) scheme. Special stress is put in the definition of the AC external forces. First, we introduce a semantic description of the LV that discriminates myocardial tissue by using texture and motion descriptors. Second, in order to ensure convergence regardless of the initial contour, the external energy is decoupled according to the orientation of the edges in the image potential. We have validated the model in terms of error in segmented contours and accuracy of regional clinical scores. |
|
|
Address |
Buenos Aires (Argentina) |
|
|
Corporate Author |
IEEE EMB |
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1557-170X |
ISBN |
978-1-4244-4123-5 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
EMBC |
|
|
Notes |
IAM |
Approved |
no |
|
|
Call Number |
IAM @ iam @ GAG2010 |
Serial |
1514 |
|
Permanent link to this record |
|
|
|
|
Author |
Katerine Diaz; Jesus Martinez del Rincon; Aura Hernandez-Sabate |


|
|
Title  |
Decremental generalized discriminative common vectors applied to images classification |
Type |
Journal Article |
|
Year |
2017 |
Publication |
Knowledge-Based Systems |
Abbreviated Journal |
KBS |
|
|
Volume |
131 |
Issue |
|
Pages |
46-57 |
|
|
Keywords |
Decremental learning; Generalized Discriminative Common Vectors; Feature extraction; Linear subspace methods; Classification |
|
|
Abstract |
In this paper, a novel decremental subspace-based learning method called Decremental Generalized Discriminative Common Vectors method (DGDCV) is presented. The method makes use of the concept of decremental learning, which we introduce in the field of supervised feature extraction and classification. By efficiently removing unnecessary data and/or classes for a knowledge base, our methodology is able to update the model without recalculating the full projection or accessing to the previously processed training data, while retaining the previously acquired knowledge. The proposed method has been validated in 6 standard face recognition datasets, showing a considerable computational gain without compromising the accuracy of the model. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.118; 600.121;IAM |
Approved |
no |
|
|
Call Number |
Admin @ si @ DMH2017a |
Serial |
3003 |
|
Permanent link to this record |
|
|
|
|
Author |
Jose Elias Yauri |

|
|
Title  |
Deep Learning Based Data Fusion Approaches for the Assessment of Cognitive States on EEG Signals |
Type |
Book Whole |
|
Year |
2023 |
Publication |
PhD Thesis, Universitat Autonoma de Barcelona-CVC |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
For millennia, the study of the couple brain-mind has fascinated the humanity in order to understand the complex nature of cognitive states. A cognitive state is the state of the mind at a specific time and involves cognition activities to acquire and process information for making a decision, solving a problem, or achieving a goal.
While normal cognitive states assist in the successful accomplishment of tasks; on the contrary, abnormal states of the mind can lead to task failures due to a reduced cognition capability. In this thesis, we focus on the assessment of cognitive states by means of the analysis of ElectroEncephaloGrams (EEG) signals using deep learning methods. EEG records the electrical activity of the brain using a set of electrodes placed on the scalp that output a set of spatiotemporal signals that are expected to be correlated to a specific mental process.
From the point of view of artificial intelligence, any method for the assessment of cognitive states using EEG signals as input should face several challenges. On the one hand, one should determine which is the most suitable approach for the optimal combination of the multiple signals recorded by EEG electrodes. On the other hand, one should have a protocol for the collection of good quality unambiguous annotated data, and an experimental design for the assessment of the generalization and transfer of models. In order to tackle them, first, we propose several convolutional neural architectures to perform data fusion of the signals recorded by EEG electrodes, at raw signal and feature levels. Four channel fusion methods, easy to incorporate into any neural network architecture, are proposed and assessed. Second, we present a method to create an unambiguous dataset for the prediction of cognitive mental workload using serious games and an Airbus-320 flight simulator. Third, we present a validation protocol that takes into account the levels of generalization of models based on the source and amount of test data.
Finally, the approaches for the assessment of cognitive states are applied to two use cases of high social impact: the assessment of mental workload for personalized support systems in the cockpit and the detection of epileptic seizures. The results obtained from the first use case show the feasibility of task transfer of models trained to detect workload in serious games to real flight scenarios. The results from the second use case show the generalization capability of our EEG channel fusion methods at k-fold cross-validation, patient-specific, and population levels. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
Ph.D. thesis |
|
|
Publisher |
IMPRIMA |
Place of Publication |
|
Editor |
Aura Hernandez;Debora Gil |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM |
Approved |
no |
|
|
Call Number |
Admin @ si @ Yau2023 |
Serial |
3962 |
|
Permanent link to this record |
|
|
|
|
Author |
Petia Radeva; A.Amini; J.Huang; Enric Marti |



|
|
Title  |
Deformable B-Solids and Implicit Snakes for Localization and Tracking of SPAMM MRI-Data |
Type |
Conference Article |
|
Year |
1996 |
Publication |
Workshop on Mathematical Methods in Biomedical Image Analysis |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
192-201 |
|
|
Keywords |
|
|
|
Abstract |
To date, MRI-SPAMM data from different image slices have been analyzed independently. In this paper, we propose an approach for 3D tag localization and tracking of SPAMM data by a novel deformable B-solid. The solid is defined in terms of a 3D tensor product B-spline. The isoparametric curves of the B-spline solid have special importance. These are termed implicit snakes as they deform under image forces from tag lines in different image slices. The localization and tracking of tag lines is performed under constraints of continuity and smoothness of the B-solid. The framework unifies the problems of localization, and displacement fitting and interpolation into the same procedure utilizing B-spline bases for interpolation. To track motion from boundaries and restrict image forces to the myocardium, a volumetric model is employed as a pair of coupled endocardial and epicardial B-spline surfaces. To recover deformations in the LV an energy-minimization problem is posed where both tag and ... |
|
|
Address |
San Francisco CA |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
IEEE Computer Society |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
0-8186-7368-0 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
MMBIA ’96 |
|
|
Notes |
MILAB;IAM; |
Approved |
no |
|
|
Call Number |
IAM @ iam @ RAH1996 |
Serial |
1630 |
|
Permanent link to this record |
|
|
|
|
Author |
Petia Radeva; Amir Amini; Jintao Huang; Enric Marti |

|
|
Title  |
Deformable B-Solids: application for localization and tracking of MRI-SPAMM data |
Type |
Report |
|
Year |
1996 |
Publication |
CVC Technical Report |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
8 |
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
To date, MRI-SPAMM data from different image slices have been analyzed independently. In this paper, we propose an approach for 3D tag localization and tracking of SPAMM data by a novel deformable B-solid. The solid is defined in terms of a 3D tensor product B-spline. The isoparametric curves of the B-spline solid have special importance. These are termed implicit snakes as they deform under image forces from tag lines in different image slices. The localization and tracking of tag lines is performed under constraints of continuity and smoothness of the B-solid. The framework unifies the problems of localization, and displacement fitting and interpolation into the same procedure utilizing B-spline bases for interpolation. To track motion from boundaries and restrict image forces to the myocardium, a volumetric model is employed as a pair of coupled endocardial and epicardial B-spline surfaces. To recover deformations in the LV an energy-minimization problem is posed where both tag and ... |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
CVC (UAB) |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
MILAB;IAM |
Approved |
no |
|
|
Call Number |
IAM @ iam @ RHM1996 |
Serial |
1631 |
|
Permanent link to this record |