|
Records |
Links |
|
Author |
Antoni Rosell; Sonia Baeza; S. Garcia-Reina; JL. Mate; Ignasi Guasch; I. Nogueira; I. Garcia-Olive; Guillermo Torres; Carles Sanchez; Debora Gil |
|
|
Title |
Radiomics to increase the effectiveness of lung cancer screening programs. Radiolung preliminary results. |
Type |
Journal Article |
|
Year |
2022 |
Publication |
European Respiratory Journal |
Abbreviated Journal |
ERJ |
|
|
Volume |
60 |
Issue |
66 |
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM |
Approved |
no |
|
|
Call Number |
Admin @ si @ RBG2022c |
Serial |
3835 |
|
Permanent link to this record |
|
|
|
|
Author |
Antoni Rosell; Sonia Baeza; S. Garcia-Reina; JL. Mate; Ignasi Guasch; I. Nogueira; I. Garcia-Olive; Guillermo Torres; Carles Sanchez; Debora Gil |
|
|
Title |
EP01.05-001 Radiomics to Increase the Effectiveness of Lung Cancer Screening Programs. Radiolung Preliminary Results |
Type |
Journal Article |
|
Year |
2022 |
Publication |
Journal of Thoracic Oncology |
Abbreviated Journal |
JTO |
|
|
Volume |
17 |
Issue |
9 |
Pages |
S182 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM |
Approved |
no |
|
|
Call Number |
Admin @ si @ RBG2022b |
Serial |
3834 |
|
Permanent link to this record |
|
|
|
|
Author |
Juan Borrego-Carazo; Carles Sanchez; David Castells; Jordi Carrabina; Debora Gil |
|
|
Title |
A benchmark for the evaluation of computational methods for bronchoscopic navigation |
Type |
Journal Article |
|
Year |
2022 |
Publication |
International Journal of Computer Assisted Radiology and Surgery |
Abbreviated Journal |
IJCARS |
|
|
Volume |
17 |
Issue |
1 |
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM |
Approved |
no |
|
|
Call Number |
Admin @ si @ BSC2022 |
Serial |
3832 |
|
Permanent link to this record |
|
|
|
|
Author |
Guillermo Torres; Debora Gil; Antoni Rosell; S. Mena; Carles Sanchez |
|
|
Title |
Virtual Radiomics Biopsy for the Histological Diagnosis of Pulmonary Nodules – Intermediate Results of the RadioLung Project |
Type |
Journal Article |
|
Year |
2023 |
Publication |
International Journal of Computer Assisted Radiology and Surgery |
Abbreviated Journal |
IJCARS |
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM |
Approved |
no |
|
|
Call Number |
Admin @ si @ TGM2023 |
Serial |
3830 |
|
Permanent link to this record |
|
|
|
|
Author |
Saad Minhas; Zeba Khanam; Shoaib Ehsan; Klaus McDonald Maier; Aura Hernandez-Sabate |
|
|
Title |
Weather Classification by Utilizing Synthetic Data |
Type |
Journal Article |
|
Year |
2022 |
Publication |
Sensors |
Abbreviated Journal |
SENS |
|
|
Volume |
22 |
Issue |
9 |
Pages |
3193 |
|
|
Keywords |
Weather classification; synthetic data; dataset; autonomous car; computer vision; advanced driver assistance systems; deep learning; intelligent transportation systems |
|
|
Abstract |
Weather prediction from real-world images can be termed a complex task when targeting classification using neural networks. Moreover, the number of images throughout the available datasets can contain a huge amount of variance when comparing locations with the weather those images are representing. In this article, the capabilities of a custom built driver simulator are explored specifically to simulate a wide range of weather conditions. Moreover, the performance of a new synthetic dataset generated by the above simulator is also assessed. The results indicate that the use of synthetic datasets in conjunction with real-world datasets can increase the training efficiency of the CNNs by as much as 74%. The article paves a way forward to tackle the persistent problem of bias in vision-based datasets. |
|
|
Address |
21 April 2022 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
MDPI |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; 600.139; 600.159; 600.166; 600.145; |
Approved |
no |
|
|
Call Number |
Admin @ si @ MKE2022 |
Serial |
3761 |
|
Permanent link to this record |
|
|
|
|
Author |
David Castells; Vinh Ngo; Juan Borrego-Carazo; Marc Codina; Carles Sanchez; Debora Gil; Jordi Carrabina |
|
|
Title |
A Survey of FPGA-Based Vision Systems for Autonomous Cars |
Type |
Journal Article |
|
Year |
2022 |
Publication |
IEEE Access |
Abbreviated Journal |
ACESS |
|
|
Volume |
10 |
Issue |
|
Pages |
132525-132563 |
|
|
Keywords |
Autonomous automobile; Computer vision; field programmable gate arrays; reconfigurable architectures |
|
|
Abstract |
On the road to making self-driving cars a reality, academic and industrial researchers are working hard to continue to increase safety while meeting technical and regulatory constraints Understanding the surrounding environment is a fundamental task in self-driving cars. It requires combining complex computer vision algorithms. Although state-of-the-art algorithms achieve good accuracy, their implementations often require powerful computing platforms with high power consumption. In some cases, the processing speed does not meet real-time constraints. FPGA platforms are often used to implement a category of latency-critical algorithms that demand maximum performance and energy efficiency. Since self-driving car computer vision functions fall into this category, one could expect to see a wide adoption of FPGAs in autonomous cars. In this paper, we survey the computer vision FPGA-based works from the literature targeting automotive applications over the last decade. Based on the survey, we identify the strengths and weaknesses of FPGAs in this domain and future research opportunities and challenges. |
|
|
Address |
16 December 2022 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
IEEE |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; 600.166 |
Approved |
no |
|
|
Call Number |
Admin @ si @ CNB2022 |
Serial |
3760 |
|
Permanent link to this record |
|
|
|
|
Author |
Sonia Baeza; Debora Gil; I.Garcia Olive; M.Salcedo; J.Deportos; Carles Sanchez; Guillermo Torres; G.Moragas; Antoni Rosell |
|
|
Title |
A novel intelligent radiomic analysis of perfusion SPECT/CT images to optimize pulmonary embolism diagnosis in COVID-19 patients |
Type |
Journal Article |
|
Year |
2022 |
Publication |
EJNMMI Physics |
Abbreviated Journal |
EJNMMI-PHYS |
|
|
Volume |
9 |
Issue |
1, Article 84 |
Pages |
1-17 |
|
|
Keywords |
|
|
|
Abstract |
Background: COVID-19 infection, especially in cases with pneumonia, is associated with a high rate of pulmonary embolism (PE). In patients with contraindications for CT pulmonary angiography (CTPA) or non-diagnostic CTPA, perfusion single-photon emission computed tomography/computed tomography (Q-SPECT/CT) is a diagnostic alternative. The goal of this study is to develop a radiomic diagnostic system to detect PE based only on the analysis of Q-SPECT/CT scans.
Methods: This radiomic diagnostic system is based on a local analysis of Q-SPECT/CT volumes that includes both CT and Q-SPECT values for each volume point. We present a combined approach that uses radiomic features extracted from each scan as input into a fully connected classifcation neural network that optimizes a weighted crossentropy loss trained to discriminate between three diferent types of image patterns (pixel sample level): healthy lungs (control group), PE and pneumonia. Four types of models using diferent confguration of parameters were tested.
Results: The proposed radiomic diagnostic system was trained on 20 patients (4,927 sets of samples of three types of image patterns) and validated in a group of 39 patients (4,410 sets of samples of three types of image patterns). In the training group, COVID-19 infection corresponded to 45% of the cases and 51.28% in the test group. In the test group, the best model for determining diferent types of image patterns with PE presented a sensitivity, specifcity, positive predictive value and negative predictive value of 75.1%, 98.2%, 88.9% and 95.4%, respectively. The best model for detecting
pneumonia presented a sensitivity, specifcity, positive predictive value and negative predictive value of 94.1%, 93.6%, 85.2% and 97.6%, respectively. The area under the curve (AUC) was 0.92 for PE and 0.91 for pneumonia. When the results obtained at the pixel sample level are aggregated into regions of interest, the sensitivity of the PE increases to 85%, and all metrics improve for pneumonia.
Conclusion: This radiomic diagnostic system was able to identify the diferent lung imaging patterns and is a frst step toward a comprehensive intelligent radiomic system to optimize the diagnosis of PE by Q-SPECT/CT. |
|
|
Address |
5 dec 2022 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM |
Approved |
no |
|
|
Call Number |
Admin @ si @ BGG2022 |
Serial |
3759 |
|
Permanent link to this record |
|
|
|
|
Author |
Jose Elias Yauri; Aura Hernandez-Sabate; Pau Folch; Debora Gil |
|
|
Title |
Mental Workload Detection Based on EEG Analysis |
Type |
Conference Article |
|
Year |
2021 |
Publication |
Artificial Intelligent Research and Development. Proceedings 23rd International Conference of the Catalan Association for Artificial Intelligence. |
Abbreviated Journal |
|
|
|
Volume |
339 |
Issue |
|
Pages |
268-277 |
|
|
Keywords |
Cognitive states; Mental workload; EEG analysis; Neural Networks. |
|
|
Abstract |
The study of mental workload becomes essential for human work efficiency, health conditions and to avoid accidents, since workload compromises both performance and awareness. Although workload has been widely studied using several physiological measures, minimising the sensor network as much as possible remains both a challenge and a requirement.
Electroencephalogram (EEG) signals have shown a high correlation to specific cognitive and mental states like workload. However, there is not enough evidence in the literature to validate how well models generalize in case of new subjects performing tasks of a workload similar to the ones included during model’s training.
In this paper we propose a binary neural network to classify EEG features across different mental workloads. Two workloads, low and medium, are induced using two variants of the N-Back Test. The proposed model was validated in a dataset collected from 16 subjects and shown a high level of generalization capability: model reported an average recall of 81.81% in a leave-one-out subject evaluation. |
|
|
Address |
Virtual; October 20-22 2021 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CCIA |
|
|
Notes |
IAM; 600.139; 600.118; 600.145 |
Approved |
no |
|
|
Call Number |
Admin @ si @ |
Serial |
3723 |
|
Permanent link to this record |
|
|
|
|
Author |
Aura Hernandez-Sabate; Lluis Albarracin; F. Javier Sanchez |
|
|
Title |
Graph-Based Problem Explorer: A Software Tool to Support Algorithm Design Learning While Solving the Salesperson Problem |
Type |
Journal |
|
Year |
2020 |
Publication |
Mathematics |
Abbreviated Journal |
MATH |
|
|
Volume |
20 |
Issue |
8(9) |
Pages |
1595 |
|
|
Keywords |
STEM education; Project-based learning; Coding; software tool |
|
|
Abstract |
In this article, we present a sequence of activities in the form of a project in order to promote
learning on design and analysis of algorithms. The project is based on the resolution of a real problem, the salesperson problem, and it is theoretically grounded on the fundamentals of mathematical modelling. In order to support the students’ work, a multimedia tool, called Graph-based Problem Explorer (GbPExplorer), has been designed and refined to promote the development of computer literacy in engineering and science university students. This tool incorporates several modules to allow coding different algorithmic techniques solving the salesman problem. Based on an educational design research along five years, we observe that working with GbPExplorer during the project provides students with the possibility of representing the situation to be studied in the form of graphs and analyze them from a computational point of view. |
|
|
Address |
September 2020 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; ISE |
Approved |
no |
|
|
Call Number |
Admin @ si @ |
Serial |
3722 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; Aura Hernandez-Sabate; Julien Enconniere; Saryani Asmayawati; Pau Folch; Juan Borrego-Carazo; Miquel Angel Piera |
|
|
Title |
E-Pilots: A System to Predict Hard Landing During the Approach Phase of Commercial Flights |
Type |
Journal Article |
|
Year |
2022 |
Publication |
IEEE Access |
Abbreviated Journal |
ACCESS |
|
|
Volume |
10 |
Issue |
|
Pages |
7489-7503 |
|
|
Keywords |
|
|
|
Abstract |
More than half of all commercial aircraft operation accidents could have been prevented by executing a go-around. Making timely decision to execute a go-around manoeuvre can potentially reduce overall aviation industry accident rate. In this paper, we describe a cockpit-deployable machine learning system to support flight crew go-around decision-making based on the prediction of a hard landing event.
This work presents a hybrid approach for hard landing prediction that uses features modelling temporal dependencies of aircraft variables as inputs to a neural network. Based on a large dataset of 58177 commercial flights, the results show that our approach has 85% of average sensitivity with 74% of average specificity at the go-around point. It follows that our approach is a cockpit-deployable recommendation system that outperforms existing approaches. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; 600.139; 600.118; 600.145 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GHE2022 |
Serial |
3721 |
|
Permanent link to this record |