|
Records |
Links |
|
Author |
Antonio Esteban Lansaque |

|
|
Title |
3D reconstruction and recognition using structured ligth |
Type |
Report |
|
Year |
2014 |
Publication |
CVC Technical Report |
Abbreviated Journal |
|
|
|
Volume |
179 |
Issue  |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
This work covers the problem of 3D reconstruction, recognition and 6DOF pose estimation. The goal of this project is to reconstruct a 3D scene and to align an object model of the industrial pieces onto the reconstructed scene. The reconstruction algorithm is based on stereo techniques and the recognition algorithm is based on SHOT descriptors computed on a set of uniform keypoints. Correspondences are used to estimate a first 6DOF transformation that maps the model onto the scene and then ICP algorithm is used to refine the transformation. In order to check the effectiveness of the proposed algorithm, several experiments were performed. These experiments were conducted on a lab environment in order to get results under the same conditions in all of them. Although obtained results are not real time results, the proposed algorithm ends up with high rates of object recognition. |
|
|
Address |
UAB; September 2014 |
|
|
Corporate Author |
|
Thesis |
Master's thesis |
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; 600.075 |
Approved |
no |
|
|
Call Number |
Admin @ si @ Est2014 |
Serial |
2578 |
|
Permanent link to this record |
|
|
|
|
Author |
Jorge Bernal; F. Javier Sanchez; Gloria Fernandez Esparrach; Debora Gil; Cristina Rodriguez de Miguel; Fernando Vilariño |


|
|
Title |
WM-DOVA Maps for Accurate Polyp Highlighting in Colonoscopy: Validation vs. Saliency Maps from Physicians |
Type |
Journal Article |
|
Year |
2015 |
Publication |
Computerized Medical Imaging and Graphics |
Abbreviated Journal |
CMIG |
|
|
Volume |
43 |
Issue  |
|
Pages |
99-111 |
|
|
Keywords |
Polyp localization; Energy Maps; Colonoscopy; Saliency; Valley detection |
|
|
Abstract |
We introduce in this paper a novel polyp localization method for colonoscopy videos. Our method is based on a model of appearance for polyps which defines polyp boundaries in terms of valley information. We propose the integration of valley information in a robust way fostering complete, concave and continuous boundaries typically associated to polyps. This integration is done by using a window of radial sectors which accumulate valley information to create WMDOVA1 energy maps related with the likelihood of polyp presence. We perform a double validation of our maps, which include the introduction of two new databases, including the first, up to our knowledge, fully annotated database with clinical metadata associated. First we assess that the highest value corresponds with the location of the polyp in the image. Second, we show that WM-DOVA energy maps can be comparable with saliency maps obtained from physicians' fixations obtained via an eye-tracker. Finally, we prove that our method outperforms state-of-the-art computational saliency results. Our method shows good performance, particularly for small polyps which are reported to be the main sources of polyp miss-rate, which indicates the potential applicability of our method in clinical practice. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0895-6111 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
MV; IAM; 600.047; 600.060; 600.075;SIAI |
Approved |
no |
|
|
Call Number |
Admin @ si @ BSF2015 |
Serial |
2609 |
|
Permanent link to this record |
|
|
|
|
Author |
Carles Sanchez; Debora Gil; R. Tazi; Jorge Bernal; Y. Ruiz; L. Planas; F. Javier Sanchez; Antoni Rosell |

|
|
Title |
Quasi-real time digital assessment of Central Airway Obstruction |
Type |
Conference Article |
|
Year |
2015 |
Publication |
3rd European congress for bronchology and interventional pulmonology ECBIP2015 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue  |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
Barcelona; Spain; April 2015 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ECBIP |
|
|
Notes |
IAM; MV; 600.075 |
Approved |
no |
|
|
Call Number |
SGT2015 |
Serial |
2612 |
|
Permanent link to this record |
|
|
|
|
Author |
Antoni Gurgui; Debora Gil; Enric Marti |


|
|
Title |
Laplacian Unitary Domain for Texture Morphing |
Type |
Conference Article |
|
Year |
2015 |
Publication |
Proceedings of the 10th International Conference on Computer Vision Theory and Applications VISIGRAPP2015 |
Abbreviated Journal |
|
|
|
Volume |
1 |
Issue  |
|
Pages |
693-699 |
|
|
Keywords |
Facial; metamorphosis;LaplacianMorphing |
|
|
Abstract |
Deformation of expressive textures is the gateway to realistic computer synthesis of expressions. By their good mathematical properties and flexible formulation on irregular meshes, most texture mappings rely on solutions to the Laplacian in the cartesian space. In the context of facial expression morphing, this approximation can be seen from the opposite point of view by neglecting the metric. In this paper, we use the properties of the Laplacian in manifolds to present a novel approach to warping expressive facial images in order to generate a morphing between them. |
|
|
Address |
Munich; Germany; February 2015 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
SciTePress |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-989-758-089-5 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
VISAPP |
|
|
Notes |
IAM; 600.075 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GGM2015 |
Serial |
2614 |
|
Permanent link to this record |
|
|
|
|
Author |
Hanne Kause; Patricia Marquez; Andrea Fuster; Aura Hernandez-Sabate; Luc Florack; Debora Gil; Hans van Assen |

|
|
Title |
Quality Assessment of Optical Flow in Tagging MRI |
Type |
Conference Article |
|
Year |
2015 |
Publication |
5th Dutch Bio-Medical Engineering Conference BME2015 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue  |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
The Netherlands; January 2015 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
BME |
|
|
Notes |
IAM; ADAS; 600.076; 600.075 |
Approved |
no |
|
|
Call Number |
Admin @ si @ KMF2015 |
Serial |
2616 |
|
Permanent link to this record |
|
|
|
|
Author |
David Roche |

|
|
Title |
A Statistical Framework for Terminating Evolutionary Algorithms at their Steady State |
Type |
Book Whole |
|
Year |
2015 |
Publication |
PhD Thesis, Universitat Autonoma de Barcelona-CVC |
Abbreviated Journal |
|
|
|
Volume |
|
Issue  |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
As any iterative technique, it is a necessary condition a stop criterion for terminating Evolutionary Algorithms (EA). In the case of optimization methods, the algorithm should stop at the time it has reached a steady state so it can not improve results anymore. Assessing the reliability of termination conditions for EAs is of prime importance. A wrong or weak stop criterion can negatively aect both the computational eort and the nal result.
In this Thesis, we introduce a statistical framework for assessing whether a termination condition is able to stop EA at its steady state. In one hand a numeric approximation to steady states to detect the point in which EA population has lost its diversity has been presented for EA termination. This approximation has been applied to dierent EA paradigms based on diversity and a selection of functions covering the properties most relevant for EA convergence. Experiments show that our condition works regardless of the search space dimension and function landscape and Dierential Evolution (DE) arises as the best paradigm. On the other hand, we use a regression model in order to determine the requirements ensuring that a measure derived from EA evolving population is related to the distance to the optimum in xspace.
Our theoretical framework is analyzed across several benchmark test functions
and two standard termination criteria based on function improvement in f-space and EA population x-space distribution for the DE paradigm. Results validate our statistical framework as a powerful tool for determining the capability of a measure for terminating EA and select the x-space distribution as the best-suited for accurately stopping DE in real-world applications. |
|
|
Address |
July 2015 |
|
|
Corporate Author |
|
Thesis |
Ph.D. thesis |
|
|
Publisher |
Ediciones Graficas Rey |
Place of Publication |
|
Editor |
Debora Gil;Jesus Giraldo |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; 600.075 |
Approved |
no |
|
|
Call Number |
Admin @ si @ Roc2015 |
Serial |
2686 |
|
Permanent link to this record |
|
|
|
|
Author |
Patricia Marquez |

|
|
Title |
A Confidence Framework for the Assessment of Optical Flow Performance |
Type |
Book Whole |
|
Year |
2015 |
Publication |
PhD Thesis, Universitat Autonoma de Barcelona-CVC |
Abbreviated Journal |
|
|
|
Volume |
|
Issue  |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Optical Flow (OF) is the input of a wide range of decision support systems such as car driver assistance, UAV guiding or medical diagnose. In these real situations, the absence of ground truth forces to assess OF quality using quantities computed from either sequences or the computed optical flow itself. These quantities are generally known as Confidence Measures, CM. Even if we have a proper confidence measure we still need a way to evaluate its ability to discard pixels with an OF prone to have a large error. Current approaches only provide a descriptive evaluation of the CM performance but such approaches are not capable to fairly compare different confidence measures and optical flow algorithms. Thus, it is of prime importance to define a framework and a general road map for the evaluation of optical flow performance.
This thesis provides a framework able to decide which pairs “ optical flow – confidence measure” (OF-CM) are best suited for optical flow error bounding given a confidence level determined by a decision support system. To design this framework we cover the following points:
Descriptive scores. As a first step, we summarize and analyze the sources of inaccuracies in the output of optical flow algorithms. Second, we present several descriptive plots that visually assess CM capabilities for OF error bounding. In addition to the descriptive plots, given a plot representing OF-CM capabilities to bound the error, we provide a numeric score that categorizes the plot according to its decreasing profile, that is, a score assessing CM performance.
Statistical framework. We provide a comparison framework that assesses the best suited OF-CM pair for error bounding that uses a two stage cascade process. First of all we assess the predictive value of the confidence measures by means of a descriptive plot. Then, for a sample of descriptive plots computed over training frames, we obtain a generic curve that will be used for sequences with no ground truth. As a second step, we evaluate the obtained general curve and its capabilities to really reflect the predictive value of a confidence measure using the variability across train frames by means of ANOVA.
The presented framework has shown its potential in the application on clinical decision support systems. In particular, we have analyzed the impact of the different image artifacts such as noise and decay to the output of optical flow in a cardiac diagnose system and we have improved the navigation inside the bronchial tree on bronchoscopy. |
|
|
Address |
July 2015 |
|
|
Corporate Author |
|
Thesis |
Ph.D. thesis |
|
|
Publisher |
Ediciones Graficas Rey |
Place of Publication |
|
Editor |
Debora Gil;Aura Hernandez |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-84-943427-2-1 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; 600.075 |
Approved |
no |
|
|
Call Number |
Admin @ si @ Mar2015 |
Serial |
2687 |
|
Permanent link to this record |
|
|
|
|
Author |
Sergio Vera |

|
|
Title |
Anatomic Registration based on Medial Axis Parametrizations |
Type |
Book Whole |
|
Year |
2015 |
Publication |
PhD Thesis, Universitat Autonoma de Barcelona-CVC |
Abbreviated Journal |
|
|
|
Volume |
|
Issue  |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Image registration has been for many years the gold standard method to bring two images into correspondence. It has been used extensively in the eld of medical imaging in order to put images of dierent patients into a common overlapping spatial position. However, medical image registration is a slow, iterative optimization process, where many variables and prone to fall into the pit traps local minima.
A coordinate system parameterizing the interior of organs is a powerful tool for a systematic localization of injured tissue. If the same coordinate values are assigned to specic anatomical sites, parameterizations ensure integration of data across different medical image modalities. Harmonic mappings have been used to produce parametric meshes over the surface of anatomical shapes, given their ability to set values at specic locations through boundary conditions. However, most of the existing implementations in medical imaging restrict to either anatomical surfaces, or the depth coordinate with boundary conditions is given at discrete sites of limited geometric diversity.
The medial surface of the shape can be used to provide a continuous basis for the denition of a depth coordinate. However, given that dierent methods for generation of medial surfaces generate dierent manifolds, not all of them are equally suited to be the basis of radial coordinate for a parameterization. It would be desirable that the medial surface will be smooth, and robust to surface shape noise, with low number of spurious branches or surfaces.
In this thesis we present methods for computation of smooth medial manifolds and apply them to the generation of for anatomical volumetric parameterization that extends current harmonic parameterizations to the interior anatomy using information provided by the volume medial surface. This reference system sets a solid base for creating anatomical models of the anatomical shapes, and allows comparing several patients in a common framework of reference. |
|
|
Address |
November 2015 |
|
|
Corporate Author |
|
Thesis |
Ph.D. thesis |
|
|
Publisher |
Ediciones Graficas Rey |
Place of Publication |
|
Editor |
Debora Gil;Miguel Angel Gonzalez Ballester |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-84-943427-8-3 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; 600.075 |
Approved |
no |
|
|
Call Number |
Admin @ si @ Ver2015 |
Serial |
2708 |
|
Permanent link to this record |
|
|
|
|
Author |
Gloria Fernandez Esparrach; Jorge Bernal; Cristina Rodriguez de Miguel; Debora Gil; Fernando Vilariño; Henry Cordova; Cristina Sanchez Montes; I.Araujo ; Maria Lopez Ceron; J.Llach; F. Javier Sanchez |


|
|
Title |
Colonic polyps are correctly identified by a computer vision method using wm-dova energy maps |
Type |
Conference Article |
|
Year |
2015 |
Publication |
Proceedings of 23 United European- UEG Week 2015 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue  |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
UEG |
|
|
Notes |
MV; IAM; 600.075;SIAI |
Approved |
no |
|
|
Call Number |
Admin @ si @ FBR2015 |
Serial |
2732 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; F. Javier Sanchez; Gloria Fernandez Esparrach; Jorge Bernal |


|
|
Title |
3D Stable Spatio-temporal Polyp Localization in Colonoscopy Videos |
Type |
Book Chapter |
|
Year |
2015 |
Publication |
Computer-Assisted and Robotic Endoscopy. Revised selected papers of Second International Workshop, CARE 2015, Held in Conjunction with MICCAI 2015 |
Abbreviated Journal |
|
|
|
Volume |
9515 |
Issue  |
|
Pages |
140-152 |
|
|
Keywords |
Colonoscopy, Polyp Detection, Polyp Localization, Region Extraction, Watersheds |
|
|
Abstract |
Computational intelligent systems could reduce polyp miss rate in colonoscopy for colon cancer diagnosis and, thus, increase the efficiency of the procedure. One of the main problems of existing polyp localization methods is a lack of spatio-temporal stability in their response. We propose to explore the response of a given polyp localization across temporal windows in order to select
those image regions presenting the highest stable spatio-temporal response.
Spatio-temporal stability is achieved by extracting 3D watershed regions on the
temporal window. Stability in localization response is statistically determined by analysis of the variance of the output of the localization method inside each 3D region. We have explored the benefits of considering spatio-temporal stability in two different tasks: polyp localization and polyp detection. Experimental results indicate an average improvement of 21:5% in polyp localization and 43:78% in polyp detection. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CARE |
|
|
Notes |
IAM; MV; 600.075 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GSF2015 |
Serial |
2733 |
|
Permanent link to this record |