toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Esmitt Ramirez; Carles Sanchez; Agnes Borras; Marta Diez-Ferrer; Antoni Rosell; Debora Gil edit   pdf
url  openurl
  Title Image-Based Bronchial Anatomy Codification for Biopsy Guiding in Video Bronchoscopy Type Conference Article
  Year 2018 Publication OR 2.0 Context-Aware Operating Theaters, Computer Assisted Robotic Endoscopy, Clinical Image-Based Procedures, and Skin Image Analysis Abbreviated Journal  
  Volume 11041 Issue Pages (down)  
  Keywords Biopsy guiding; Bronchoscopy; Lung biopsy; Intervention guiding; Airway codification  
  Abstract Bronchoscopy examinations allow biopsy of pulmonary nodules with minimum risk for the patient. Even for experienced bronchoscopists, it is difficult to guide the bronchoscope to most distal lesions and obtain an accurate diagnosis. This paper presents an image-based codification of the bronchial anatomy for bronchoscopy biopsy guiding. The 3D anatomy of each patient is codified as a binary tree with nodes representing bronchial levels and edges labeled using their position on images projecting the 3D anatomy from a set of branching points. The paths from the root to leaves provide a codification of navigation routes with spatially consistent labels according to the anatomy observes in video bronchoscopy explorations. We evaluate our labeling approach as a guiding system in terms of the number of bronchial levels correctly codified, also in the number of labels-based instructions correctly supplied, using generalized mixed models and computer-generated data. Results obtained for three independent observers prove the consistency and reproducibility of our guiding system. We trust that our codification based on viewer’s projection might be used as a foundation for the navigation process in Virtual Bronchoscopy systems.  
  Address Granada; September 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MICCAIW  
  Notes IAM; 600.096; 600.075; 601.323; 600.145 Approved no  
  Call Number Admin @ si @ RSB2018b Serial 3137  
Permanent link to this record
 

 
Author Debora Gil; Antonio Esteban Lansaque; Agnes Borras; Carles Sanchez edit  url
openurl 
  Title Enhancing virtual bronchoscopy with intra-operative data using a multi-objective GAN Type Journal Article
  Year 2019 Publication International Journal of Computer Assisted Radiology and Surgery Abbreviated Journal IJCAR  
  Volume 7 Issue 1 Pages (down)  
  Keywords  
  Abstract This manuscript has been withdrawn by bioRxiv due to upload of an incorrect version of the manuscript by the authors. Therefore, this manuscript should not be cited as reference for this project.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.139; 600.145 Approved no  
  Call Number Admin @ si @ GEB2019 Serial 3307  
Permanent link to this record
 

 
Author Debora Gil; Carles Sanchez; Agnes Borras; Marta Diez-Ferrer; Antoni Rosell edit  url
doi  openurl
  Title Segmentation of Distal Airways using Structural Analysis Type Journal Article
  Year 2019 Publication PloS one Abbreviated Journal Plos  
  Volume 14 Issue 12 Pages (down)  
  Keywords  
  Abstract Segmentation of airways in Computed Tomography (CT) scans is a must for accurate support of diagnosis and intervention of many pulmonary disorders. In particular, lung cancer diagnosis would benefit from segmentations reaching most distal airways. We present a method that combines descriptors of bronchi local appearance and graph global structural analysis to fine-tune thresholds on the descriptors adapted for each bronchial level. We have compared our method to the top performers of the EXACT09 challenge and to a commercial software for biopsy planning evaluated in an own-collected data-base of high resolution CT scans acquired under different breathing conditions. Results on EXACT09 data show that our method provides a high leakage reduction with minimum loss in airway detection. Results on our data-base show the reliability across varying breathing conditions and a competitive performance for biopsy planning compared to a commercial solution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.139; 600.145 Approved no  
  Call Number Admin @ si @ GSB2019 Serial 3357  
Permanent link to this record
 

 
Author Debora Gil; Antoni Rosell edit  openurl
  Title Advances in Artificial Intelligence – How Lung Cancer CT Screening Will Progress? Type Abstract
  Year 2019 Publication World Lung Cancer Conference Abbreviated Journal  
  Volume Issue Pages (down)  
  Keywords  
  Abstract Invited speaker  
  Address Barcelona; September 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference IASLC WCLC  
  Notes IAM; 600.139; 600.145 Approved no  
  Call Number Admin @ si @ GiR2019 Serial 3361  
Permanent link to this record
 

 
Author Antonio Esteban Lansaque edit  isbn
openurl 
  Title An Endoscopic Navigation System for Lung Cancer Biopsy Type Book Whole
  Year 2019 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages (down)  
  Keywords  
  Abstract Lung cancer is one of the most diagnosed cancers among men and women. Actually,
lung cancer accounts for 13% of the total cases with a 5-year global survival
rate in patients. Although Early detection increases survival rate from 38% to 67%, accurate diagnosis remains a challenge. Pathological confirmation requires extracting a sample of the lesion tissue for its biopsy. The preferred procedure for tissue biopsy is called bronchoscopy. A bronchoscopy is an endoscopic technique for the internal exploration of airways which facilitates the performance of minimal invasive interventions with low risk for the patient. Recent advances in bronchoscopic devices have increased their use for minimal invasive diagnostic and intervention procedures, like lung cancer biopsy sampling. Despite the improvement in bronchoscopic device quality, there is a lack of intelligent computational systems for supporting in-vivo clinical decision during examinations. Existing technologies fail to accurately reach the lesion due to several aspects at intervention off-line planning and poor intra-operative guidance at exploration time. Existing guiding systems radiate patients and clinical staff,might be expensive and achieve a suboptimlal 70% of yield boost. Diagnostic yield could be improved reducing radiation and costs by developing intra-operative support systems able to guide the bronchoscopist to the lesion during the intervention. The goal of this PhD thesis is to develop an image-based navigation systemfor intra-operative guidance of bronchoscopists to a target lesion across a path previously planned on a CT-scan. We propose a 3D navigation system which uses the anatomy of video bronchoscopy frames to locate the bronchoscope within the airways. Once the bronchoscope is located, our navigation system is able to indicate the bifurcation which needs to be followed to reach the lesion. In order to facilitate an off-line validation
as realistic as possible, we also present a method for augmenting simulated virtual bronchoscopies with the appearance of intra-operative videos. Experiments performed on augmented and intra-operative videos, prove that our algorithm can be speeded up for an on-line implementation in the operating room.
 
  Address October 2019  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Debora Gil; Carles Sanchez  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-121011-0-2 Medium  
  Area Expedition Conference  
  Notes IAM; 600.139; 600.145 Approved no  
  Call Number Admin @ si @ Est2019 Serial 3392  
Permanent link to this record
 

 
Author Saad Minhas; Aura Hernandez-Sabate; Shoaib Ehsan; Klaus McDonald Maier edit  doi
openurl 
  Title Effects of Non-Driving Related Tasks during Self-Driving mode Type Journal Article
  Year 2020 Publication IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS  
  Volume Issue Pages (down)  
  Keywords  
  Abstract Perception reaction time and mental workload have proven to be crucial in manual driving. Moreover, in highly automated cars, where most of the research is focusing on Level 4 Autonomous driving, take-over performance is also a key factor when taking road safety into account. This study aims to investigate how the immersion in non-driving related tasks affects the take-over performance of drivers in given scenarios. The paper also highlights the use of virtual simulators to gather efficient data that can be crucial in easing the transition between manual and autonomous driving scenarios. The use of Computer Aided Simulations is of absolute importance in this day and age since the automotive industry is rapidly moving towards Autonomous technology. An experiment comprising of 40 subjects was performed to examine the reaction times of driver and the influence of other variables in the success of take-over performance in highly automated driving under different circumstances within a highway virtual environment. The results reflect the relationship between reaction times under different scenarios that the drivers might face under the circumstances stated above as well as the importance of variables such as velocity in the success on regaining car control after automated driving. The implications of the results acquired are important for understanding the criteria needed for designing Human Machine Interfaces specifically aimed towards automated driving conditions. Understanding the need to keep drivers in the loop during automation, whilst allowing drivers to safely engage in other non-driving related tasks is an important research area which can be aided by the proposed study.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.139; 600.145 Approved no  
  Call Number Admin @ si @ MHE2020 Serial 3468  
Permanent link to this record
 

 
Author Angels Barbera; Ruth Marginet Flinch; Montserrat Martin; Jose L Mate; Albert Oriol; Fina Martinez-Soler; Tomas Santalucia; Pedro L. Fernandez edit  url
doi  openurl
  Title The Immunohistochemical Expression of Programmed Death Ligand 1 Type Journal Article
  Year 2020 Publication Applied Immunohistochemistry & Molecular Morphology Abbreviated Journal AIMM  
  Volume Issue Pages (down)  
  Keywords  
  Abstract Humanized antibodies targeting programmed death receptor 1 (PD-1) or its ligand (PD-L1) have been approved for the treatment of different cancers. Some of these antibodies show a correlation between the tissue expression of PD-L1 and response. Evaluation of PD-L1 expression presents multiple challenges, but some preanalytical issues such as tissue fixation have been scarcely evaluated. With the hypothesis that immunohistochemical staining of PD-L1 may be impacted by the time of specimen fixation, we evaluated differences in its expression in tonsil samples exposed to predefined fixation times. Random nontumoral tonsillectomy specimens were blindly evaluated in tissue microarray slides after staining with SP142 and SP263 antibodies. With fixation times ranging from 12 to 72 hours, between 2.8% and 6.1% of the samples were considered to be suboptimally stained, with no differences between the 2 antibodies within these fixation times. A significantly higher proportion of samples exposed to a fixation time of 96 hours presented suboptimal immunostaining (15.6%, P<0.0001). In addition, suboptimally stained spots were 20.8% using SP142 and 10.4% using SP263 after 96 hours of fixation (P=0.046). In conclusion, the quality of staining for PD-L1 in tonsil samples decreased with overfixation of the specimen at times >72 hours. Samples exposed to formaldehyde for longer periods presented suboptimal results for both clones, but the SP142 antibody presented a significantly lower tolerance to formalin overexposure than SP263. These results indicate the relevance of a controlled preanalytical processing of samples and particularly the length of fixation of tumor specimens.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.139; 600.145 Approved no  
  Call Number Admin @ si @ BMM2020 Serial 3470  
Permanent link to this record
 

 
Author Debora Gil; Guillermo Torres edit  openurl
  Title A multi-shape loss function with adaptive class balancing for the segmentation of lung structures Type Conference Article
  Year 2020 Publication 34th International Congress and Exhibition on Computer Assisted Radiology & Surgery Abbreviated Journal  
  Volume Issue Pages (down)  
  Keywords  
  Abstract  
  Address Virtual; June 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CARS  
  Notes IAM; 600.139; 600.145 Approved no  
  Call Number Admin @ si @ GiT2020 Serial 3472  
Permanent link to this record
 

 
Author Debora Gil; Oriol Ramos Terrades; Raquel Perez edit  openurl
  Title Topological Radiomics (TOPiomics): Early Detection of Genetic Abnormalities in Cancer Treatment Evolution Type Conference Article
  Year 2020 Publication Women in Geometry and Topology Abbreviated Journal  
  Volume Issue Pages (down)  
  Keywords  
  Abstract  
  Address Barcelona; September 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; DAG; 600.139; 600.145; 600.121 Approved no  
  Call Number Admin @ si @ GRP2020 Serial 3473  
Permanent link to this record
 

 
Author Debora Gil; Katerine Diaz; Carles Sanchez; Aura Hernandez-Sabate edit   pdf
url  openurl
  Title Early Screening of SARS-CoV-2 by Intelligent Analysis of X-Ray Images Type Miscellaneous
  Year 2020 Publication Arxiv Abbreviated Journal  
  Volume Issue Pages (down)  
  Keywords  
  Abstract Future SARS-CoV-2 virus outbreak COVID-XX might possibly occur during the next years. However the pathology in humans is so recent that many clinical aspects, like early detection of complications, side effects after recovery or early screening, are currently unknown. In spite of the number of cases of COVID-19, its rapid spread putting many sanitary systems in the edge of collapse has hindered proper collection and analysis of the data related to COVID-19 clinical aspects. We describe an interdisciplinary initiative that integrates clinical research, with image diagnostics and the use of new technologies such as artificial intelligence and radiomics with the aim of clarifying some of SARS-CoV-2 open questions. The whole initiative addresses 3 main points: 1) collection of standardize data including images, clinical data and analytics; 2) COVID-19 screening for its early diagnosis at primary care centers; 3) define radiomic signatures of COVID-19 evolution and associated pathologies for the early treatment of complications. In particular, in this paper we present a general overview of the project, the experimental design and first results of X-ray COVID-19 detection using a classic approach based on HoG and feature selection. Our experiments include a comparison to some recent methods for COVID-19 screening in X-Ray and an exploratory analysis of the feasibility of X-Ray COVID-19 screening. Results show that classic approaches can outperform deep-learning methods in this experimental setting, indicate the feasibility of early COVID-19 screening and that non-COVID infiltration is the group of patients most similar to COVID-19 in terms of radiological description of X-ray. Therefore, an efficient COVID-19 screening should be complemented with other clinical data to better discriminate these cases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.139; 600.145; 601.337 Approved no  
  Call Number Admin @ si @ GDS2020 Serial 3474  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: