toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author David Roche; Debora Gil; Jesus Giraldo edit   pdf
doi  isbn
openurl 
  Title Detecting loss of diversity for an efficient termination of EAs Type Conference Article
  Year 2013 Publication 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing Abbreviated Journal  
  Volume Issue Pages 561 - 566  
  Keywords EA termination; EA population diversity; EA steady state  
  Abstract (up) Termination of Evolutionary Algorithms (EA) at its steady state so that useless iterations are not performed is a main point for its efficient application to black-box problems. Many EA algorithms evolve while there is still diversity in their population and, thus, they could be terminated by analyzing the behavior some measures of EA population diversity. This paper presents a numeric approximation to steady states that can be used to detect the moment EA population has lost its diversity for EA termination. Our condition has been applied to 3 EA paradigms based on diversity and a selection of functions
covering the properties most relevant for EA convergence.
Experiments show that our condition works regardless of the search space dimension and function landscape.
 
  Address Timisoara; Rumania;  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4799-3035-7 Medium  
  Area Expedition Conference SYNASC  
  Notes IAM; 600.044; 600.060; 605.203 Approved no  
  Call Number Admin @ si @ RGG2013c Serial 2299  
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Debora Gil; Petia Radeva; E.N.Nofrerias edit   pdf
doi  openurl
  Title Anisotropic processing of image structures for adventitia detection in intravascular ultrasound images Type Conference Article
  Year 2004 Publication Proc. Computers in Cardiology Abbreviated Journal  
  Volume 31 Issue Pages 229-232  
  Keywords  
  Abstract (up) The adventitia layer appears as a weak edge in IVUS images with a non-uniform grey level, which difficulties its detection. In order to enhance edges, we apply an anisotropic filter that homogenizes the grey level along the image significant structures (ridges, valleys and edges). A standard edge detector applied to the filtered image yields a set of candidate points prone to be unconnected. The final model is obtained by interpolating the former line segments along the tangent direction to the level curves of the filtered image with an anisotropic contour closing technique based on functional extension principles  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Chicago (USA) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; MILAB Approved no  
  Call Number IAM @ iam @ HGR2004 Serial 1555  
Permanent link to this record
 

 
Author Albert Andaluz edit   pdf
openurl 
  Title LV Contour Segmentation in TMR images using Semantic Description of Tissue and Prior Knowledge Correction Type Report
  Year 2009 Publication CVC Technical Report Abbreviated Journal  
  Volume 142 Issue Pages  
  Keywords Active Contour Models; Snakes; Active Shape Models; Deformable Templates; Left Ventricle Segmentation; Generalized Orthogonal Procrustes Analysis; Harmonic Phase Flow; Principal Component Analysis; Tagged Magnetic Resonance  
  Abstract (up) The Diagnosis of Left Ventricle (LV) pathologies is related to regional wall motion analysis. Health indicator scores such as the rotation and the torsion are useful for the diagnose of the Left Ventricle (LV) function. However, this requires proper identification of LV segments. On one hand, manual segmentation is robust, but it is slow and requires medical expertise. On the other hand, the tag pattern in Tagged Magnetic Resonance (TMR) sequences is a problem for the automatic segmentation of the LV boundaries. Consequently, we propose a method based in the classical formulation of parametric Snakes, combined with Active Shape models. Our semantic definition of the LV is tagged tissue that experiences motion in the systolic cycle. This defines two energy potentials for the Snake convergence. Additionally, the mean shape corrects excessive deviation from the anatomical shape. We have validated our approach in 15 healthy volunteers and two short axis cuts. In this way, we have compared the automatic segmentations to manual shapes outlined by medical experts. Also, we have explored the accuracy of clinical scores computed using automatic contours. The results show minor divergence in the approximation and the manual segmentations as well as robust computation of clinical scores in all cases. From this we conclude that the proposed method is a promising support tool for clinical analysis.  
  Address  
  Corporate Author Thesis Master's thesis  
  Publisher Place of Publication Bellaterra 08193, Barcelona, Spain Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; Approved no  
  Call Number IAM @ iam @ And2009 Serial 1667  
Permanent link to this record
 

 
Author Paula Fritzsche; C.Roig; Ana Ripoll; Emilio Luque; Aura Hernandez-Sabate edit   pdf
doi  openurl
  Title A Performance Prediction Methodology for Data-dependent Parallel Applications Type Conference Article
  Year 2006 Publication Proceedings of the IEEE International Conference on Cluster Computing Abbreviated Journal  
  Volume Issue Pages 1-8  
  Keywords  
  Abstract (up) The increase in the use of parallel distributed architectures in order to solve large-scale scientific problems has generated the need for performance prediction for both deterministic applications and non-deterministic applications. In particular, the performance prediction of data dependent programs is an extremely challenging problem because for a specific issue the input datasets may cause different execution times. Generally, a parallel application is characterized as a collection of tasks and their interrelations. If the application is time-critical it is not enough to work with only one value per task, and consequently knowledge of the distribution of task execution times is crucial. The development of a new prediction methodology to estimate the performance of data-dependent parallel applications is the primary target of this study. This approach makes it possible to evaluate the parallel performance of an application without the need of implementation. A real data-dependent arterial structure detection application model is used to apply the methodology proposed. The predicted times obtained using the new methodology for genuine datasets are compared with predicted times that arise from using only one execution value per task. Finally, the experimental study shows that the new methodology generates more precise predictions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number IAM @ iam @ FRR2006 Serial 1497  
Permanent link to this record
 

 
Author Petia Radeva; Enric Marti edit   pdf
doi  openurl
  Title An improved model of snakes for model-based segmentation Type Conference Article
  Year 1995 Publication Proceedings of Computer Analysis of Images and Patterns Abbreviated Journal  
  Volume Issue Pages 515-520  
  Keywords  
  Abstract (up) The main advantage of segmentation by snakes consists in its ability to incorporate smoothness constraints on the detected shapes that can occur. Likewise, we propose to model snakes with other properties that reflect the information provided about the object of interest in a different extent. We consider different kinds of snakes, those searching for contours with a certain direction, those preserving an object’s model, those seeking for symmetry, those expanding open, etc. The availability of such a collection of snakes allows not only the more complete use of the knowledge about the segmented object, but also to solve some problems of the existing snakes. Our experiments on segmentation of facial features justify the usefulness of snakes with different properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CAIP  
  Notes MILAB;IAM Approved no  
  Call Number IAM @ iam @ RaM1995b Serial 1632  
Permanent link to this record
 

 
Author Jaume Garcia; David Rotger; Francesc Carreras; R.Leta; Petia Radeva edit   pdf
doi  isbn
openurl 
  Title Contrast echography segmentation and tracking by trained deformable models Type Conference Article
  Year 2003 Publication Proc. Computers in Cardiology Abbreviated Journal  
  Volume 30 Issue Pages 173-176  
  Keywords  
  Abstract (up) The objective of this work is to segment the human left ventricle myocardium (LVM) in contrast echocardiography imaging and thus track it along a cardiac cycle in order to extract quantitative data about heart function. Ultrasound images are hard to work with due to their speckle appearance. To overcome this we report the combination of active contour models (ACM) or snakes and active shape models (ASM). The ability of ACM in giving closed and smooth curves in addition to the power of the ASM in producing shapes similar to the ones learned, evoke to a robust algorithm. Meanwhile the snake is attracted towards image main features, ASM acts as a correction factor. The algorithm was tested independently on 180 frames and satisfying results were obtained: in 95% the maximum difference between automatic and experts segmentation was less than 12 pixels.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Centre de Visió per Computador – Dept. Informàtica, UAB Edifici O – Campus UAB, 08193 Bellater Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0276-6547 ISBN 0-7803-8170-X Medium  
  Area Expedition Conference  
  Notes IAM;MILAB Approved no  
  Call Number IAM @ iam @ GRC2003 Serial 1512  
Permanent link to this record
 

 
Author David Roche; Debora Gil; Jesus Giraldo edit  url
doi  openurl
  Title Multiple active receptor conformation, agonist efficacy and maximum effect of the system: the conformation-based operational model of agonism, Type Journal Article
  Year 2013 Publication Drug Discovery Today Abbreviated Journal DDT  
  Volume 18 Issue 7-8 Pages 365-371  
  Keywords  
  Abstract (up) The operational model of agonism assumes that the maximum effect a particular receptor system can achieve (the Em parameter) is fixed. Em estimates are above but close to the asymptotic maximum effects of endogenous agonists. The concept of Em is contradicted by superagonists and those positive allosteric modulators that significantly increase the maximum effect of endogenous agonists. An extension of the operational model is proposed that assumes that the Em parameter does not necessarily have a single value for a receptor system but has multiple values associated to multiple active receptor conformations. The model provides a mechanistic link between active receptor conformation and agonist efficacy, which can be useful for the analysis of agonist response under different receptor scenarios.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.057; 600.054 Approved no  
  Call Number IAM @ iam @ RGG2013a Serial 2190  
Permanent link to this record
 

 
Author David Roche; Debora Gil; Jesus Giraldo edit   pdf
url  openurl
  Title Assessing agonist efficacy in an uncertain Em world Type Conference Article
  Year 2012 Publication 40th Keystone Symposia on mollecular and celular biology Abbreviated Journal  
  Volume Issue Pages 79  
  Keywords  
  Abstract (up) The operational model of agonism has been widely used for the analysis of agonist action since its formulation in 1983. The model includes the Em parameter, which is defined as the maximum response of the system. The methods for Em estimation provide Em values not significantly higher than the maximum responses achieved by full agonists. However, it has been found that that some classes of compounds as, for instance, superagonists and positive allosteric modulators can increase the full agonist maximum response, implying upper limits for Em and thereby posing doubts on the validity of Em estimates. Because of the correlation between Em and operational efficacy, τ, wrong Em estimates will yield wrong τ estimates.
In this presentation, the operational model of agonism and various methods for the simulation of allosteric modulation will be analyzed. Alternatives for curve fitting will be presented and discussed.
 
  Address Fairmont Banff Springs, Banff, Alberta, Canada  
  Corporate Author Keystone Symposia Thesis  
  Publisher Keystone Symposia Place of Publication Editor A. Christopoulus and M. Bouvier  
  Language english Summary Language english Original Title  
  Series Editor Keystone Symposia Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference KSMCB  
  Notes IAM Approved no  
  Call Number IAM @ iam @ RGG2012 Serial 1855  
Permanent link to this record
 

 
Author Gemma Sanchez; Josep Llados; Enric Marti edit  url
openurl 
  Title Segmentation and analysis of linial texture in plans Type Conference Article
  Year 1997 Publication Intelligence Artificielle et Complexité. Abbreviated Journal  
  Volume Issue Pages  
  Keywords Structural Texture, Voronoi, Hierarchical Clustering, String Matching.  
  Abstract (up) The problem of texture segmentation and interpretation is one of the main concerns in the field of document analysis. Graphical documents often contain areas characterized by a structural texture whose recognition allows both the document understanding, and its storage in a more compact way. In this work, we focus on structural linial textures of regular repetition contained in plan documents. Starting from an atributed graph which represents the vectorized input image, we develop a method to segment textured areas and recognize their placement rules. We wish to emphasize that the searched textures do not follow a predefined pattern. Minimal closed loops of the input graph are computed, and then hierarchically clustered. In this hierarchical clustering, a distance function between two closed loops is defined in terms of their areas difference and boundary resemblance computed by a string matching procedure. Finally it is noted that, when the texture consists of isolated primitive elements, the same method can be used after computing a Voronoi Tesselation of the input graph.  
  Address Paris, France  
  Corporate Author Thesis  
  Publisher Place of Publication Paris Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference AERFAI  
  Notes DAG;IAM; Approved no  
  Call Number IAM @ iam @ SLM1997 Serial 1649  
Permanent link to this record
 

 
Author Josep Llados; Ernest Valveny; Gemma Sanchez; Enric Marti edit   pdf
url  doi
isbn  openurl
  Title Symbol recognition: current advances and perspectives Type Book Chapter
  Year 2002 Publication Graphics Recognition Algorithms And Applications Abbreviated Journal LNCS  
  Volume 2390 Issue Pages 104-128  
  Keywords  
  Abstract (up) The recognition of symbols in graphic documents is an intensive research activity in the community of pattern recognition and document analysis. A key issue in the interpretation of maps, engineering drawings, diagrams, etc. is the recognition of domain dependent symbols according to a symbol database. In this work we first review the most outstanding symbol recognition methods from two different points of view: application domains and pattern recognition methods. In the second part of the paper, open and unaddressed problems involved in symbol recognition are described, analyzing their current state of art and discussing future research challenges. Thus, issues such as symbol representation, matching, segmentation, learning, scalability of recognition methods and performance evaluation are addressed in this work. Finally, we discuss the perspectives of symbol recognition concerning to new paradigms such as user interfaces in handheld computers or document database and WWW indexing by graphical content.  
  Address London, UK  
  Corporate Author Thesis  
  Publisher Springer-Verlag Place of Publication Editor Dorothea Blostein and Young- Bin Kwon  
  Language Summary Language Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN 3-540-44066-6 Medium  
  Area Expedition Conference GREC  
  Notes DAG; IAM; Approved no  
  Call Number IAM @ iam @ LVS2002 Serial 1572  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: