|
Records |
Links |
|
Author |
Debora Gil; Katerine Diaz; Carles Sanchez; Aura Hernandez-Sabate |


|
|
Title |
Early Screening of SARS-CoV-2 by Intelligent Analysis of X-Ray Images |
Type |
Miscellaneous |
|
Year |
2020 |
Publication |
Arxiv |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract  |
Future SARS-CoV-2 virus outbreak COVID-XX might possibly occur during the next years. However the pathology in humans is so recent that many clinical aspects, like early detection of complications, side effects after recovery or early screening, are currently unknown. In spite of the number of cases of COVID-19, its rapid spread putting many sanitary systems in the edge of collapse has hindered proper collection and analysis of the data related to COVID-19 clinical aspects. We describe an interdisciplinary initiative that integrates clinical research, with image diagnostics and the use of new technologies such as artificial intelligence and radiomics with the aim of clarifying some of SARS-CoV-2 open questions. The whole initiative addresses 3 main points: 1) collection of standardize data including images, clinical data and analytics; 2) COVID-19 screening for its early diagnosis at primary care centers; 3) define radiomic signatures of COVID-19 evolution and associated pathologies for the early treatment of complications. In particular, in this paper we present a general overview of the project, the experimental design and first results of X-ray COVID-19 detection using a classic approach based on HoG and feature selection. Our experiments include a comparison to some recent methods for COVID-19 screening in X-Ray and an exploratory analysis of the feasibility of X-Ray COVID-19 screening. Results show that classic approaches can outperform deep-learning methods in this experimental setting, indicate the feasibility of early COVID-19 screening and that non-COVID infiltration is the group of patients most similar to COVID-19 in terms of radiological description of X-ray. Therefore, an efficient COVID-19 screening should be complemented with other clinical data to better discriminate these cases. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; 600.139; 600.145; 601.337 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GDS2020 |
Serial |
3474 |
|
Permanent link to this record |
|
|
|
|
Author |
Spyridon Bakas; Mauricio Reyes; Andras Jakab; Stefan Bauer; Markus Rempfler; Alessandro Crimi; Russell Takeshi Shinohara; Christoph Berger; Sung Min Ha; Martin Rozycki; Marcel Prastawa; Esther Alberts; Jana Lipkova; John Freymann; Justin Kirby; Michel Bilello; Hassan Fathallah-Shaykh; Roland Wiest; Jan Kirschke; Benedikt Wiestler; Rivka Colen; Aikaterini Kotrotsou; Pamela Lamontagne; Daniel Marcus; Mikhail Milchenko; Arash Nazeri; Marc-Andre Weber; Abhishek Mahajan; Ujjwal Baid; Dongjin Kwon; Manu Agarwal; Mahbubul Alam; Alberto Albiol; Antonio Albiol; Varghese Alex; Tuan Anh Tran; Tal Arbel; Aaron Avery; Subhashis Banerjee; Thomas Batchelder; Kayhan Batmanghelich; Enzo Battistella; Martin Bendszus; Eze Benson; Jose Bernal; George Biros; Mariano Cabezas; Siddhartha Chandra; Yi-Ju Chang; Joseph Chazalon; Shengcong Chen; Wei Chen; Jefferson Chen; Kun Cheng; Meinel Christoph; Roger Chylla; Albert Clérigues; Anthony Costa; Xiaomeng Cui; Zhenzhen Dai; Lutao Dai; Eric Deutsch; Changxing Ding; Chao Dong; Wojciech Dudzik; Theo Estienne; Hyung Eun Shin; Richard Everson; Jonathan Fabrizio; Longwei Fang; Xue Feng; Lucas Fidon; Naomi Fridman; Huan Fu; David Fuentes; David G Gering; Yaozong Gao; Evan Gates; Amir Gholami; Mingming Gong; Sandra Gonzalez-Villa; J Gregory Pauloski; Yuanfang Guan; Sheng Guo; Sudeep Gupta; Meenakshi H Thakur; Klaus H Maier-Hein; Woo-Sup Han; Huiguang He; Aura Hernandez-Sabate; Evelyn Herrmann; Naveen Himthani; Winston Hsu; Cheyu Hsu; Xiaojun Hu; Xiaobin Hu; Yan Hu; Yifan Hu; Rui Hua |

|
|
Title |
Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge |
Type |
Miscellaneous |
|
Year |
2018 |
Publication |
Arxiv |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
BraTS; challenge; brain; tumor; segmentation; machine learning; glioma; glioblastoma; radiomics; survival; progression; RECIST |
|
|
Abstract  |
Gliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneous histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrotic core, active and non-enhancing core. This intrinsic heterogeneity is also portrayed in their radio-phenotype, as their sub-regions are depicted by varying intensity profiles disseminated across multiparametric magnetic resonance imaging (mpMRI) scans, reflecting varying biological properties. Their heterogeneous shape, extent, and location are some of the factors that make these tumors difficult to resect, and in some cases inoperable. The amount of resected tumor is a factor also considered in longitudinal scans, when evaluating the apparent tumor for potential diagnosis of progression. Furthermore, there is mounting evidence that accurate segmentation of the various tumor sub-regions can offer the basis for quantitative image analysis towards prediction of patient overall survival. This study assesses the state-of-the-art machine learning (ML) methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i.e. 2012-2018. Specifically, we focus on i) evaluating segmentations of the various glioma sub-regions in preoperative mpMRI scans, ii) assessing potential tumor progression by virtue of longitudinal growth of tumor sub-regions, beyond use of the RECIST criteria, and iii) predicting the overall survival from pre-operative mpMRI scans of patients that undergone gross total resection. Finally, we investigate the challenge of identifying the best ML algorithms for each of these tasks, considering that apart from being diverse on each instance of the challenge, the multi-institutional mpMRI BraTS dataset has also been a continuously evolving/growing dataset. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.118;MILAB;IAM |
Approved |
no |
|
|
Call Number |
Admin @ si @ BRJ2018 |
Serial |
3252 |
|
Permanent link to this record |
|
|
|
|
Author |
Ernest Valveny; Enric Marti |


|
|
Title |
Hand-drawn symbol recognition in graphic documents using deformable template matching and a Bayesian framework |
Type |
Conference Article |
|
Year |
2000 |
Publication |
Proc. 15th Int Pattern Recognition Conf |
Abbreviated Journal |
|
|
|
Volume |
2 |
Issue |
|
Pages |
239-242 |
|
|
Keywords |
|
|
|
Abstract  |
Hand-drawn symbols can take many different and distorted shapes from their ideal representation. Then, very flexible methods are needed to be able to handle unconstrained drawings. We propose here to extend our previous work in hand-drawn symbol recognition based on a Bayesian framework and deformable template matching. This approach gets flexibility enough to fit distorted shapes in the drawing while keeping fidelity to the ideal shape of the symbol. In this work, we define the similarity measure between an image and a symbol based on the distance from every pixel in the image to the lines in the symbol. Matching is carried out using an implementation of the EM algorithm. Thus, we can improve recognition rates and computation time with respect to our previous formulation based on a simulated annealing algorithm. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
0-7695-0750-6 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG;IAM; |
Approved |
no |
|
|
Call Number |
IAM @ iam @ VAM2000 |
Serial |
1656 |
|
Permanent link to this record |
|
|
|
|
Author |
Aura Hernandez-Sabate; Jose Elias Yauri; Pau Folch; Daniel Alvarez; Debora Gil |

|
|
Title |
EEG Dataset Collection for Mental Workload Predictions in Flight-Deck Environment |
Type |
Journal Article |
|
Year |
2024 |
Publication |
Sensors |
Abbreviated Journal |
SENS |
|
|
Volume |
24 |
Issue |
4 |
Pages |
1174 |
|
|
Keywords |
|
|
|
Abstract  |
High mental workload reduces human performance and the ability to correctly carry out complex tasks. In particular, aircraft pilots enduring high mental workloads are at high risk of failure, even with catastrophic outcomes. Despite progress, there is still a lack of knowledge about the interrelationship between mental workload and brain functionality, and there is still limited data on flight-deck scenarios. Although recent emerging deep-learning (DL) methods using physiological data have presented new ways to find new physiological markers to detect and assess cognitive states, they demand large amounts of properly annotated datasets to achieve good performance. We present a new dataset of electroencephalogram (EEG) recordings specifically collected for the recognition of different levels of mental workload. The data were recorded from three experiments, where participants were induced to different levels of workload through tasks of increasing cognition demand. The first involved playing the N-back test, which combines memory recall with arithmetical skills. The second was playing Heat-the-Chair, a serious game specifically designed to emphasize and monitor subjects under controlled concurrent tasks. The third was flying in an Airbus320 simulator and solving several critical situations. The design of the dataset has been validated on three different levels: (1) correlation of the theoretical difficulty of each scenario to the self-perceived difficulty and performance of subjects; (2) significant difference in EEG temporal patterns across the theoretical difficulties and (3) usefulness for the training and evaluation of AI models. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM |
Approved |
no |
|
|
Call Number |
Admin @ si @ HYF2024 |
Serial |
4019 |
|
Permanent link to this record |
|
|
|
|
Author |
Albert Andaluz |


|
|
Title |
Harmonic Phase Flow: User's guide |
Type |
Manual |
|
Year |
2012 |
Publication |
CVC |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract  |
HPF is a plugin for the computation of clinical scores under Osirix.
This manual provides a basic guide for experienced clinical staff. Chapter 1 provides the theoretical background in which this plugin is based.
Next, in chapter 2 we provide basic instructions for installing and uninstalling this plugin. chapter 3we shows a step-by-step scenario to compute clinical scores from tagged-MRI images with HPF. Finally, in chapter 4 we provide a quick guide for plugin developers |
|
|
Address |
Bellaterra, Barcelona (Spain) |
|
|
Corporate Author |
Computer Vision Center |
Thesis |
|
|
|
Publisher |
CVC |
Place of Publication |
Barcelona |
Editor |
|
|
|
Language |
english |
Summary Language |
english |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM |
Approved |
no |
|
|
Call Number |
IAM @ iam @ And2012 |
Serial |
1863 |
|
Permanent link to this record |
|
|
|
|
Author |
Sergio Vera |

|
|
Title |
Anatomic Registration based on Medial Axis Parametrizations |
Type |
Book Whole |
|
Year |
2015 |
Publication |
PhD Thesis, Universitat Autonoma de Barcelona-CVC |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract  |
Image registration has been for many years the gold standard method to bring two images into correspondence. It has been used extensively in the eld of medical imaging in order to put images of dierent patients into a common overlapping spatial position. However, medical image registration is a slow, iterative optimization process, where many variables and prone to fall into the pit traps local minima.
A coordinate system parameterizing the interior of organs is a powerful tool for a systematic localization of injured tissue. If the same coordinate values are assigned to specic anatomical sites, parameterizations ensure integration of data across different medical image modalities. Harmonic mappings have been used to produce parametric meshes over the surface of anatomical shapes, given their ability to set values at specic locations through boundary conditions. However, most of the existing implementations in medical imaging restrict to either anatomical surfaces, or the depth coordinate with boundary conditions is given at discrete sites of limited geometric diversity.
The medial surface of the shape can be used to provide a continuous basis for the denition of a depth coordinate. However, given that dierent methods for generation of medial surfaces generate dierent manifolds, not all of them are equally suited to be the basis of radial coordinate for a parameterization. It would be desirable that the medial surface will be smooth, and robust to surface shape noise, with low number of spurious branches or surfaces.
In this thesis we present methods for computation of smooth medial manifolds and apply them to the generation of for anatomical volumetric parameterization that extends current harmonic parameterizations to the interior anatomy using information provided by the volume medial surface. This reference system sets a solid base for creating anatomical models of the anatomical shapes, and allows comparing several patients in a common framework of reference. |
|
|
Address |
November 2015 |
|
|
Corporate Author |
|
Thesis |
Ph.D. thesis |
|
|
Publisher |
Ediciones Graficas Rey |
Place of Publication |
|
Editor |
Debora Gil;Miguel Angel Gonzalez Ballester |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-84-943427-8-3 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; 600.075 |
Approved |
no |
|
|
Call Number |
Admin @ si @ Ver2015 |
Serial |
2708 |
|
Permanent link to this record |
|
|
|
|
Author |
Sandra Pujades;Francesc Carreras;Manuel Ballester; Jaume Garcia; Debora Gil |

|
|
Title |
A Normalized Parametric Domain for the Analysis of the Left Ventricular Function |
Type |
Conference Article |
|
Year |
2008 |
Publication |
Proceedings of the Third International Conference on Computer Vision Theory and Applications (VISAPP’08) |
Abbreviated Journal |
|
|
|
Volume |
1 |
Issue |
|
Pages |
267-274 |
|
|
Keywords |
Helical Ventricular Myocardial Band; Myocardial Fiber; Tagged Magnetic Resonance; HARP; Optical Flow Variational Framework; Gabor Filters; B-Splines. |
|
|
Abstract  |
Impairment of left ventricular (LV) contractility due to cardiovascular diseases is reflected in LV motion patterns. The mechanics of any muscle strongly depends on the spatial orientation of its muscular fibers since the motion that the muscle undergoes mainly takes place along the fiber. The helical ventricular myocardial band (HVMB) concept describes the myocardial muscle as a unique muscular band that twists in space in a non homogeneous fashion. The 3D anisotropy of the ventricular band fibers suggests a regional analysis of the heart motion. Computation of normality models of such motion can help in the detection and localization of any cardiac disorder. In this paper we introduce, for the first time, a normalized parametric domain that allows comparison of the left ventricle motion across patients. We address, both, extraction of the LV motion from Tagged Magnetic Resonance images, as well as, defining a mapping of the LV to a common normalized domain. Extraction of normality motion patterns from 17 healthy volunteers shows the clinical potential of our LV parametrization. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; |
Approved |
no |
|
|
Call Number |
IAM @ iam @ GGP2008 |
Serial |
1627 |
|
Permanent link to this record |
|
|
|
|
Author |
Jaume Garcia; Debora Gil; Sandra Pujades; Francesc Carreras |


|
|
Title |
A Variational Framework for Assessment of the Left Ventricle Motion |
Type |
Journal Article |
|
Year |
2008 |
Publication |
International Journal Mathematical Modelling of Natural Phenomena |
Abbreviated Journal |
|
|
|
Volume |
3 |
Issue |
6 |
Pages |
76-100 |
|
|
Keywords |
Key words: Left Ventricle Dynamics, Ventricular Torsion, Tagged Magnetic Resonance, Motion Tracking, Variational Framework, Gabor Transform. |
|
|
Abstract  |
Impairment of left ventricular contractility due to cardiovascular diseases is reflected in left ventricle (LV) motion patterns. An abnormal change of torsion or long axis shortening LV values can help with the diagnosis and follow-up of LV dysfunction. Tagged Magnetic Resonance (TMR) is a widely spread medical imaging modality that allows estimation of the myocardial tissue local deformation. In this work, we introduce a novel variational framework for extracting the left ventricle dynamics from TMR sequences. A bi-dimensional representation space of TMR images given by Gabor filter banks is defined. Tracking of the phases of the Gabor response is combined using a variational framework which regularizes the deformation field just at areas where the Gabor amplitude drops, while restoring the underlying motion otherwise. The clinical applicability of the proposed method is illustrated by extracting normality models of the ventricular torsion from 19 healthy subjects. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM |
Approved |
no |
|
|
Call Number |
IAM @ iam @ GGC2008a |
Serial |
1058 |
|
Permanent link to this record |
|
|
|
|
Author |
Mireia Sole; Joan Blanco; Debora Gil; Oliver Valero; B. Cardenas; G. Fonseka; E. Anton; Alvaro Pascual; Richard Frodsham; Zaida Sarrate |

|
|
Title |
Time to match; when do homologous chromosomes become closer? |
Type |
Journal Article |
|
Year |
2022 |
Publication |
Chromosoma |
Abbreviated Journal |
CHRO |
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract  |
In most eukaryotes, pairing of homologous chromosomes is an essential feature of meiosis that ensures homologous recombination and segregation. However, when the pairing process begins, it is still under investigation. Contrasting data exists in Mus musculus, since both leptotene DSB-dependent and preleptotene DSB-independent mechanisms have been described. To unravel this contention, we examined homologous pairing in pre-meiotic and meiotic Mus musculus cells using a threedimensional fuorescence in situ hybridization-based protocol, which enables the analysis of the entire karyotype using DNA painting probes. Our data establishes in an unambiguously manner that 73.83% of homologous chromosomes are already paired at premeiotic stages (spermatogonia-early preleptotene spermatocytes). The percentage of paired homologous chromosomes increases to 84.60% at mid-preleptotene-zygotene stage, reaching 100% at pachytene stage. Importantly, our results demonstrate a high percentage of homologous pairing observed before the onset of meiosis; this pairing does not occur randomly, as the percentage was higher than that observed in somatic cells (19.47%) and between nonhomologous chromosomes (41.1%). Finally, we have also observed that premeiotic homologous pairing is asynchronous and independent of the chromosome size, GC content, or presence of NOR regions. |
|
|
Address |
August, 2022 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; 601.139; 600.145; 600.096 |
Approved |
no |
|
|
Call Number |
Admin @ si @ SBG2022 |
Serial |
3719 |
|
Permanent link to this record |
|
|
|
|
Author |
Sergio Vera; Debora Gil; Agnes Borras; Marius George Linguraru; Miguel Angel Gonzalez Ballester |


|
|
Title |
Geometric Steerable Medial Maps |
Type |
Journal Article |
|
Year |
2013 |
Publication |
Machine Vision and Applications |
Abbreviated Journal |
MVA |
|
|
Volume |
24 |
Issue |
6 |
Pages |
1255-1266 |
|
|
Keywords |
Medial Representations ,Medial Manifolds Comparation , Surface , Reconstruction |
|
|
Abstract  |
In order to provide more intuitive and easily interpretable representations of complex shapes/organs, medial manifolds should reach a compromise between simplicity in geometry and capability for restoring the anatomy/shape of the organ/volume. Existing morphological methods show excellent results when applied to 2D objects, but their quality drops across dimensions.
This paper contributes to the computation of medial manifolds in two aspects. First, we provide a standard scheme for the computation of medial manifolds that avoids degenerated medial axis segments. Second, we introduce a continuous operator for accurate and efficient computation of medial structures of arbitrary dimension. We evaluate quantitatively the performance of our method with respect to existing approaches, by applying them to syn- thetic shapes of known medial geometry. We also show its higher performance for medical imaging applications in terms of simplicity of medial structures and capability for reconstructing the anatomical volume. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Berlin Heidelberg |
Place of Publication |
|
Editor |
Mubarak Shah |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0932-8092 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; 605.203; 600.060; 600.044 |
Approved |
no |
|
|
Call Number |
IAM @ iam @ VGB2013 |
Serial |
2192 |
|
Permanent link to this record |