toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Ferran Poveda; Jaume Garcia; Enric Marti; Debora Gil edit   pdf
openurl 
  Title Validation of the myocardial architecture in DT-MRI tractography Type Conference Article
  Year 2010 Publication Medical Image Computing in Catalunya: Graduate Student Workshop Abbreviated Journal  
  Volume Issue Pages 29-30  
  Keywords  
  Abstract Deep understanding of myocardial structure may help to link form and funcion of the heart unraveling crucial knowledge for medical and surgical clinical procedures and studies. In this work we introduce two visualization techniques based on DT-MRI streamlining able to decipher interesting properties of the architectural organization of the heart.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Girona (Spain) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MICCAT  
  Notes IAM Approved no  
  Call Number (up) IAM @ iam @ PGM2010 Serial 1626  
Permanent link to this record
 

 
Author David Rotger; Misael Rosales; Jaume Garcia; Oriol Pujol ; Josefina Mauri; Petia Radeva edit   pdf
openurl 
  Title Active Vessel: A New Multimedia Workstation for Intravascular Ultrasound and Angiography Fusion Type Journal Article
  Year 2003 Publication Computers in Cardiology Abbreviated Journal  
  Volume 30 Issue Pages 65-68  
  Keywords  
  Abstract AcriveVessel is a new multimedia workstation which enables the visualization, acquisition and handling of both image modalities, on- and ofline. It enables DICOM v3.0 decompression and browsing, video acquisition,repmduction and storage for IntraVascular UltraSound (IVUS) and angiograms with their corresponding ECG,automatic catheter segmentation in angiography images (using fast marching algorithm). BSpline models definition for vessel layers on IVUS images sequence and an extensively validated tool to fuse information. This approach defines the correspondence of every IVUS image with its correspondent point in the angiogram and viceversa. The 3 0 reconstruction of the NUS catheterhessel enables real distance measurements as well as threedimensional visualization showing vessel tortuosity in the space.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM;MILAB;HuPBA Approved no  
  Call Number (up) IAM @ iam @ RRG2003 Serial 1647  
Permanent link to this record
 

 
Author C. Santa-Marta; Jaume Garcia; A. Bajo; J.J. Vaquero; M. Ledesma-Carbayo; Debora Gil edit  openurl
  Title Influence of the Temporal Resolution on the Quantification of Displacement Fields in Cardiac Magnetic Resonance Tagged Images Type Conference Article
  Year 2008 Publication XXVI Congreso Anual de la Sociedad Española de Ingenieria Biomedica Abbreviated Journal  
  Volume Issue Pages 352–353  
  Keywords  
  Abstract It is difficult to acquire tagged cardiac MR images with a high temporal and spatial resolution using clinical MR scanners. However, if such images are used for quantifying scores based on motion, it is essential a resolution as high as possibl e. This paper explores the influence of the temporal resolution of a tagged series on the quantification of myocardial dynamic parameters. To such purpose we have designed a SPAMM (Spatial Modulation of Magnetization) sequence allowing acquisition of sequences at simple and double temporal resolution. Sequences are processed to compute myocardial motion by an automatic technique based on the tracking of the harmonic phase of tagged images (the Harmonic Phase Flow, HPF). The results have been compared to manual tracking of myocardial tags. The error in displacement fields for double resolution sequences reduces 17%.  
  Address Valladolid  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Roberto hornero, Saniel Abasolo  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CASEIB  
  Notes IAM; Approved no  
  Call Number (up) IAM @ iam @ SGB2008 Serial 1033  
Permanent link to this record
 

 
Author Mariano Vazquez; Ruth Aris; Guillaume Hozeaux; R.Aubry; P.Villar;Jaume Garcia ; Debora Gil; Francesc Carreras edit   pdf
url  doi
openurl 
  Title A massively parallel computational electrophysiology model of the heart Type Journal Article
  Year 2011 Publication International Journal for Numerical Methods in Biomedical Engineering Abbreviated Journal IJNMBE  
  Volume 27 Issue Pages 1911-1929  
  Keywords computational electrophysiology; parallelization; finite element methods  
  Abstract This paper presents a patient-sensitive simulation strategy capable of using the most efficient way the high-performance computational resources. The proposed strategy directly involves three different players: Computational Mechanics Scientists (CMS), Image Processing Scientists and Cardiologists, each one mastering its own expertise area within the project. This paper describes the general integrative scheme but focusing on the CMS side presents a massively parallel implementation of computational electrophysiology applied to cardiac tissue simulation. The paper covers different angles of the computational problem: equations, numerical issues, the algorithm and parallel implementation. The proposed methodology is illustrated with numerical simulations testing all the different possibilities, ranging from small domains up to very large ones. A key issue is the almost ideal scalability not only for large and complex problems but also for medium-size meshes. The explicit formulation is particularly well suited for solving this highly transient problems, with very short time-scale.  
  Address Swansea (UK)  
  Corporate Author John Wiley & Sons, Ltd. Thesis  
  Publisher John Wiley & Sons, Ltd. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number (up) IAM @ iam @ VAH2011 Serial 1198  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: