toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Mireia Sole; Joan Blanco; Debora Gil; Oliver Valero; G. Fonseka; M. Lawrie; Francesca Vidal; Zaida Sarrate edit   pdf
openurl 
  Title Chromosome Territories in Mice Spermatogenesis: A new three-dimensional methodology of study Type Conference Article
  Year 2017 Publication 11th European CytoGenesis Conference Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address Florencia; Italia; July 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ECA  
  Notes (up) IAM; 600.096; 600.145 Approved no  
  Call Number Admin @ si @ SBG2017a Serial 2936  
Permanent link to this record
 

 
Author Mireia Sole; Joan Blanco; Debora Gil; G. Fonseka; Richard Frodsham; Oliver Valero; Francesca Vidal; Zaida Sarrate edit   pdf
openurl 
  Title Is there a pattern of Chromosome territoriality along mice spermatogenesis? Type Conference Article
  Year 2017 Publication 3rd Spanish MeioNet Meeting Abstract Book Abbreviated Journal  
  Volume Issue Pages 55-56  
  Keywords  
  Abstract  
  Address Miraflores de la Sierra; Madrid; June 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MEIONET  
  Notes (up) IAM; 600.096; 600.145 Approved no  
  Call Number Admin @ si @ Serial 2958  
Permanent link to this record
 

 
Author Jose Elias Yauri; Aura Hernandez-Sabate; Pau Folch; Debora Gil edit  doi
openurl 
  Title Mental Workload Detection Based on EEG Analysis Type Conference Article
  Year 2021 Publication Artificial Intelligent Research and Development. Proceedings 23rd International Conference of the Catalan Association for Artificial Intelligence. Abbreviated Journal  
  Volume 339 Issue Pages 268-277  
  Keywords Cognitive states; Mental workload; EEG analysis; Neural Networks.  
  Abstract The study of mental workload becomes essential for human work efficiency, health conditions and to avoid accidents, since workload compromises both performance and awareness. Although workload has been widely studied using several physiological measures, minimising the sensor network as much as possible remains both a challenge and a requirement.
Electroencephalogram (EEG) signals have shown a high correlation to specific cognitive and mental states like workload. However, there is not enough evidence in the literature to validate how well models generalize in case of new subjects performing tasks of a workload similar to the ones included during model’s training.
In this paper we propose a binary neural network to classify EEG features across different mental workloads. Two workloads, low and medium, are induced using two variants of the N-Back Test. The proposed model was validated in a dataset collected from 16 subjects and shown a high level of generalization capability: model reported an average recall of 81.81% in a leave-one-out subject evaluation.
 
  Address Virtual; October 20-22 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CCIA  
  Notes (up) IAM; 600.139; 600.118; 600.145 Approved no  
  Call Number Admin @ si @ Serial 3723  
Permanent link to this record
 

 
Author Marta Ligero; Guillermo Torres; Carles Sanchez; Katerine Diaz; Raquel Perez; Debora Gil edit   pdf
url  doi
openurl 
  Title Selection of Radiomics Features based on their Reproducibility Type Conference Article
  Year 2019 Publication 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society Abbreviated Journal  
  Volume Issue Pages 403-408  
  Keywords  
  Abstract Dimensionality reduction is key to alleviate machine learning artifacts in clinical applications with Small Sample Size (SSS) unbalanced datasets. Existing methods rely on either the probabilistic distribution of training data or the discriminant power of the reduced space, disregarding the impact of repeatability and uncertainty in features.In the present study is proposed the use of reproducibility of radiomics features to select features with high inter-class correlation coefficient (ICC). The reproducibility includes the variability introduced in the image acquisition, like medical scans acquisition parameters and convolution kernels, that affects intensity-based features and tumor annotations made by physicians, that influences morphological descriptors of the lesion.For the reproducibility of radiomics features three studies were conducted on cases collected at Vall Hebron Oncology Institute (VHIO) on responders to oncology treatment. The studies focused on the variability due to the convolution kernel, image acquisition parameters, and the inter-observer lesion identification. The features selected were those features with a ICC higher than 0.7 in the three studies.The selected features based on reproducibility were evaluated for lesion malignancy classification using a different database. Results show better performance compared to several state-of-the-art methods including Principal Component Analysis (PCA), Kernel Discriminant Analysis via QR decomposition (KDAQR), LASSO, and an own built Convolutional Neural Network.  
  Address Berlin; Alemanya; July 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference EMBC  
  Notes (up) IAM; 600.139; 600.145 Approved no  
  Call Number Admin @ si @ LTS2019 Serial 3358  
Permanent link to this record
 

 
Author Debora Gil; Guillermo Torres edit   pdf
openurl 
  Title A multi-shape loss function with adaptive class balancing for the segmentation of lung structures Type Conference Article
  Year 2020 Publication 34th International Congress and Exhibition on Computer Assisted Radiology & Surgery Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address Virtual; June 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CARS  
  Notes (up) IAM; 600.139; 600.145 Approved no  
  Call Number Admin @ si @ GiT2020 Serial 3472  
Permanent link to this record
 

 
Author Mireia Sole; Joan Blanco; Debora Gil; G. Fonseka; Richard Frodsham; Oliver Valero; Francesca Vidal; Zaida Sarrate edit  openurl
  Title Unraveling the enigmas of chromosome territoriality during spermatogenesis Type Conference Article
  Year 2017 Publication IX Jornada del Departament de Biologia Cel•lular, Fisiologia i Immunologia Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address UAB; Barcelona; June 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) IAM; 600.145 Approved no  
  Call Number Admin @ si @ SBG2017b Serial 2959  
Permanent link to this record
 

 
Author Carles Sanchez; Miguel Viñas; Coen Antens; Agnes Borras; Debora Gil edit   pdf
url  doi
openurl 
  Title Back to Front Architecture for Diagnosis as a Service Type Conference Article
  Year 2018 Publication 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing Abbreviated Journal  
  Volume Issue Pages 343-346  
  Keywords  
  Abstract Software as a Service (SaaS) is a cloud computing model in which a provider hosts applications in a server that customers use via internet. Since SaaS does not require to install applications on customers' own computers, it allows the use by multiple users of highly specialized software without extra expenses for hardware acquisition or licensing. A SaaS tailored for clinical needs not only would alleviate licensing costs, but also would facilitate easy access to new methods for diagnosis assistance. This paper presents a SaaS client-server architecture for Diagnosis as a Service (DaaS). The server is based on docker technology in order to allow execution of softwares implemented in different languages with the highest portability and scalability. The client is a content management system allowing the design of websites with multimedia content and interactive visualization of results allowing user editing. We explain a usage case that uses our DaaS as crowdsourcing platform in a multicentric pilot study carried out to evaluate the clinical benefits of a software for assessment of central airway obstruction.  
  Address Timisoara; Rumania; September 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference SYNASC  
  Notes (up) IAM; 600.145 Approved no  
  Call Number Admin @ si @ SVA2018 Serial 3360  
Permanent link to this record
 

 
Author Esmitt Ramirez; Carles Sanchez; Debora Gil edit   pdf
url  doi
openurl 
  Title Localizing Pulmonary Lesions Using Fuzzy Deep Learning Type Conference Article
  Year 2019 Publication 21st International Symposium on Symbolic and Numeric Algorithms for Scientific Computing Abbreviated Journal  
  Volume Issue Pages 290-294  
  Keywords  
  Abstract The usage of medical images is part of the clinical daily in several healthcare centers around the world. Particularly, Computer Tomography (CT) images are an important key in the early detection of suspicious lung lesions. The CT image exploration allows the detection of lung lesions before any invasive procedure (e.g. bronchoscopy, biopsy). The effective localization of lesions is performed using different image processing and computer vision techniques. Lately, the usage of deep learning models into medical imaging from detection to prediction shown that is a powerful tool for Computer-aided software. In this paper, we present an approach to localize pulmonary lung lesion using fuzzy deep learning. Our approach uses a simple convolutional neural network based using the LIDC-IDRI dataset. Each image is divided into patches associated a probability vector (fuzzy) according their belonging to anatomical structures on a CT. We showcase our approach as part of a full CAD system to exploration, planning, guiding and detection of pulmonary lesions.  
  Address Timisoara; Rumania; September 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference SYNASC  
  Notes (up) IAM; 600.145; 600.140; 601.337; 601.323 Approved no  
  Call Number Admin @ si @ RSG2019 Serial 3531  
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Debora Gil; David Roche; Monica M. S. Matsumoto; Sergio S. Furuie edit   pdf
url  openurl
  Title Inferring the Performance of Medical Imaging Algorithms Type Conference Article
  Year 2011 Publication 14th International Conference on Computer Analysis of Images and Patterns Abbreviated Journal  
  Volume 6854 Issue Pages 520-528  
  Keywords Validation, Statistical Inference, Medical Imaging Algorithms.  
  Abstract Evaluation of the performance and limitations of medical imaging algorithms is essential to estimate their impact in social, economic or clinical aspects. However, validation of medical imaging techniques is a challenging task due to the variety of imaging and clinical problems involved, as well as, the difficulties for systematically extracting a reliable solely ground truth. Although specific validation protocols are reported in any medical imaging paper, there are still two major concerns: definition of standardized methodologies transversal to all problems and generalization of conclusions to the whole clinical data set.
We claim that both issues would be fully solved if we had a statistical model relating ground truth and the output of computational imaging techniques. Such a statistical model could conclude to what extent the algorithm behaves like the ground truth from the analysis of a sampling of the validation data set. We present a statistical inference framework reporting the agreement and describing the relationship of two quantities. We show its transversality by applying it to validation of two different tasks: contour segmentation and landmark correspondence.
 
  Address Sevilla  
  Corporate Author Thesis  
  Publisher Springer-Verlag Berlin Heidelberg Place of Publication Berlin Editor Pedro Real; Daniel Diaz-Pernil; Helena Molina-Abril; Ainhoa Berciano; Walter Kropatsch  
  Language Summary Language Original Title  
  Series Editor Series Title L Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CAIP  
  Notes (up) IAM; ADAS Approved no  
  Call Number IAM @ iam @ HGR2011 Serial 1676  
Permanent link to this record
 

 
Author Patricia Marquez; Debora Gil; Aura Hernandez-Sabate edit   pdf
url  doi
openurl 
  Title A Confidence Measure for Assessing Optical Flow Accuracy in the Absence of Ground Truth Type Conference Article
  Year 2011 Publication IEEE International Conference on Computer Vision – Workshops Abbreviated Journal  
  Volume Issue Pages 2042-2049  
  Keywords IEEE International Conference on Computer Vision – Workshops  
  Abstract Optical flow is a valuable tool for motion analysis in autonomous navigation systems. A reliable application requires determining the accuracy of the computed optical flow. This is a main challenge given the absence of ground truth in real world sequences. This paper introduces a measure of optical flow accuracy for Lucas-Kanade based flows in terms of the numerical stability of the data-term. We call this measure optical flow condition number. A statistical analysis over ground-truth data show a good statistical correlation between the condition number and optical flow error. Experiments on driving sequences illustrate its potential for autonomous navigation systems.  
  Address  
  Corporate Author Thesis  
  Publisher IEEE Place of Publication Barcelona (Spain) Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCVW  
  Notes (up) IAM; ADAS Approved no  
  Call Number IAM @ iam @ MGH2011 Serial 1682  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: