2019 |
|
Debora Gil, Antonio Esteban Lansaque, Sebastian Stefaniga, Mihail Gaianu, & Carles Sanchez. (2019). "Data Augmentation from Sketch " In International Workshop on Uncertainty for Safe Utilization of Machine Learning in Medical Imaging (Vol. 11840, pp. 155–162).
Abstract: State of the art machine learning methods need huge amounts of data with unambiguous annotations for their training. In the context of medical imaging this is, in general, a very difficult task due to limited access to clinical data, the time required for manual annotations and variability across experts. Simulated data could serve for data augmentation provided that its appearance was comparable to the actual appearance of intra-operative acquisitions. Generative Adversarial Networks (GANs) are a powerful tool for artistic style transfer, but lack a criteria for selecting epochs ensuring also preservation of intra-operative content.
We propose a multi-objective optimization strategy for a selection of cycleGAN epochs ensuring a mapping between virtual images and the intra-operative domain preserving anatomical content. Our approach has been applied to simulate intra-operative bronchoscopic videos and chest CT scans from virtual sketches generated using simple graphical primitives.
Keywords: Data augmentation; cycleGANs; Multi-objective optimization
|
|
|
Esmitt Ramirez, Carles Sanchez, & Debora Gil. (2019). "Localizing Pulmonary Lesions Using Fuzzy Deep Learning " In 21st International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (pp. 290–294).
Abstract: The usage of medical images is part of the clinical daily in several healthcare centers around the world. Particularly, Computer Tomography (CT) images are an important key in the early detection of suspicious lung lesions. The CT image exploration allows the detection of lung lesions before any invasive procedure (e.g. bronchoscopy, biopsy). The effective localization of lesions is performed using different image processing and computer vision techniques. Lately, the usage of deep learning models into medical imaging from detection to prediction shown that is a powerful tool for Computer-aided software. In this paper, we present an approach to localize pulmonary lung lesion using fuzzy deep learning. Our approach uses a simple convolutional neural network based using the LIDC-IDRI dataset. Each image is divided into patches associated a probability vector (fuzzy) according their belonging to anatomical structures on a CT. We showcase our approach as part of a full CAD system to exploration, planning, guiding and detection of pulmonary lesions.
|
|
|
Marta Ligero, Guillermo Torres, Carles Sanchez, Katerine Diaz, Raquel Perez, & Debora Gil. (2019). "Selection of Radiomics Features based on their Reproducibility " In 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 403–408).
Abstract: Dimensionality reduction is key to alleviate machine learning artifacts in clinical applications with Small Sample Size (SSS) unbalanced datasets. Existing methods rely on either the probabilistic distribution of training data or the discriminant power of the reduced space, disregarding the impact of repeatability and uncertainty in features.In the present study is proposed the use of reproducibility of radiomics features to select features with high inter-class correlation coefficient (ICC). The reproducibility includes the variability introduced in the image acquisition, like medical scans acquisition parameters and convolution kernels, that affects intensity-based features and tumor annotations made by physicians, that influences morphological descriptors of the lesion.For the reproducibility of radiomics features three studies were conducted on cases collected at Vall Hebron Oncology Institute (VHIO) on responders to oncology treatment. The studies focused on the variability due to the convolution kernel, image acquisition parameters, and the inter-observer lesion identification. The features selected were those features with a ICC higher than 0.7 in the three studies.The selected features based on reproducibility were evaluated for lesion malignancy classification using a different database. Results show better performance compared to several state-of-the-art methods including Principal Component Analysis (PCA), Kernel Discriminant Analysis via QR decomposition (KDAQR), LASSO, and an own built Convolutional Neural Network.
|
|
2018 |
|
Carles Sanchez, Miguel Viñas, Coen Antens, Agnes Borras, & Debora Gil. (2018). "Back to Front Architecture for Diagnosis as a Service " In 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (pp. 343–346).
Abstract: Software as a Service (SaaS) is a cloud computing model in which a provider hosts applications in a server that customers use via internet. Since SaaS does not require to install applications on customers' own computers, it allows the use by multiple users of highly specialized software without extra expenses for hardware acquisition or licensing. A SaaS tailored for clinical needs not only would alleviate licensing costs, but also would facilitate easy access to new methods for diagnosis assistance. This paper presents a SaaS client-server architecture for Diagnosis as a Service (DaaS). The server is based on docker technology in order to allow execution of softwares implemented in different languages with the highest portability and scalability. The client is a content management system allowing the design of websites with multimedia content and interactive visualization of results allowing user editing. We explain a usage case that uses our DaaS as crowdsourcing platform in a multicentric pilot study carried out to evaluate the clinical benefits of a software for assessment of central airway obstruction.
|
|
|
Esmitt Ramirez, Carles Sanchez, Agnes Borras, Marta Diez-Ferrer, Antoni Rosell, & Debora Gil. (2018). "Image-Based Bronchial Anatomy Codification for Biopsy Guiding in Video Bronchoscopy " In OR 2.0 Context-Aware Operating Theaters, Computer Assisted Robotic Endoscopy, Clinical Image-Based Procedures, and Skin Image Analysis (Vol. 11041).
Abstract: Bronchoscopy examinations allow biopsy of pulmonary nodules with minimum risk for the patient. Even for experienced bronchoscopists, it is difficult to guide the bronchoscope to most distal lesions and obtain an accurate diagnosis. This paper presents an image-based codification of the bronchial anatomy for bronchoscopy biopsy guiding. The 3D anatomy of each patient is codified as a binary tree with nodes representing bronchial levels and edges labeled using their position on images projecting the 3D anatomy from a set of branching points. The paths from the root to leaves provide a codification of navigation routes with spatially consistent labels according to the anatomy observes in video bronchoscopy explorations. We evaluate our labeling approach as a guiding system in terms of the number of bronchial levels correctly codified, also in the number of labels-based instructions correctly supplied, using generalized mixed models and computer-generated data. Results obtained for three independent observers prove the consistency and reproducibility of our guiding system. We trust that our codification based on viewer’s projection might be used as a foundation for the navigation process in Virtual Bronchoscopy systems.
Keywords: Biopsy guiding; Bronchoscopy; Lung biopsy; Intervention guiding; Airway codification
|
|
2017 |
|
Carles Sanchez, Antonio Esteban Lansaque, Agnes Borras, Marta Diez-Ferrer, Antoni Rosell, & Debora Gil. (2017). "Towards a Videobronchoscopy Localization System from Airway Centre Tracking " In 12th International Conference on Computer Vision Theory and Applications (pp. 352–359).
Abstract: Bronchoscopists use fluoroscopy to guide flexible bronchoscopy to the lesion to be biopsied without any kind of incision. Being fluoroscopy an imaging technique based on X-rays, the risk of developmental problems and cancer is increased in those subjects exposed to its application, so minimizing radiation is crucial. Alternative guiding systems such as electromagnetic navigation require specific equipment, increase the cost of the clinical procedure and still require fluoroscopy. In this paper we propose an image based guiding system based on the extraction of airway centres from intra-operative videos. Such anatomical landmarks are matched to the airway centreline extracted from a pre-planned CT to indicate the best path to the nodule. We present a
feasibility study of our navigation system using simulated bronchoscopic videos and a multi-expert validation of landmarks extraction in 3 intra-operative ultrathin explorations.
Keywords: Video-bronchoscopy; Lung cancer diagnosis; Airway lumen detection; Region tracking; Guided bronchoscopy navigation
|
|
|
Debora Gil, Oriol Ramos Terrades, Elisa Minchole, Carles Sanchez, Noelia Cubero de Frutos, Marta Diez-Ferrer, et al. (2017). "Classification of Confocal Endomicroscopy Patterns for Diagnosis of Lung Cancer " In 6th Workshop on Clinical Image-based Procedures: Translational Research in Medical Imaging (Vol. 10550, pp. 151–159).
Abstract: Confocal Laser Endomicroscopy (CLE) is an emerging imaging technique that allows the in-vivo acquisition of cell patterns of potentially malignant lesions. Such patterns could discriminate between inflammatory and neoplastic lesions and, thus, serve as a first in-vivo biopsy to discard cases that do not actually require a cell biopsy.
The goal of this work is to explore whether CLE images obtained during videobronchoscopy contain enough visual information to discriminate between benign and malign peripheral lesions for lung cancer diagnosis. To do so, we have performed a pilot comparative study with 12 patients (6 adenocarcinoma and 6 benign-inflammatory) using 2 different methods for CLE pattern analysis: visual analysis by 3 experts and a novel methodology that uses graph methods to find patterns in pre-trained feature spaces. Our preliminary results indicate that although visual analysis can only achieve a 60.2% of accuracy, the accuracy of the proposed unsupervised image pattern classification raises to 84.6%.
We conclude that CLE images visual information allow in-vivo detection of neoplastic lesions and graph structural analysis applied to deep-learning feature spaces can achieve competitive results.
|
|
2016 |
|
Antonio Esteban Lansaque, Carles Sanchez, Agnes Borras, Marta Diez-Ferrer, Antoni Rosell, & Debora Gil. (2016). "Stable Airway Center Tracking for Bronchoscopic Navigation " In 28th Conference of the international Society for Medical Innovation and Technology.
Abstract: Bronchoscopists use X‐ray fluoroscopy to guide bronchoscopes to the lesion to be biopsied without any kind of incisions. Reducing exposure to X‐ray is important for both patients and doctors but alternatives like electromagnetic navigation require specific equipment and increase the cost of the clinical procedure. We propose a guiding system based on the extraction of airway centers from intra‐operative videos. Such anatomical landmarks could be
matched to the airway centerline extracted from a pre‐planned CT to indicate the best path to the lesion. We present an extraction of lumen centers
from intra‐operative videos based on tracking of maximal stable regions of energy maps.
|
|
|
Antonio Esteban Lansaque, Carles Sanchez, Agnes Borras, Marta Diez-Ferrer, Antoni Rosell, & Debora Gil. (2016). "Stable Anatomical Structure Tracking for video-bronchoscopy Navigation " In 19th International Conference on Medical Image Computing and Computer Assisted Intervention Workshops.
Abstract: Bronchoscopy allows to examine the patient airways for detection of lesions and sampling of tissues without surgery. A main drawback in lung cancer diagnosis is the diculty to check whether the exploration is following the correct path to the nodule that has to be biopsied. The most extended guidance uses uoroscopy which implies repeated radiation of clinical sta and patients. Alternatives such as virtual bronchoscopy or electromagnetic navigation are very expensive and not completely robust to blood, mocus or deformations as to be extensively used. We propose a method that extracts and tracks stable lumen regions at dierent levels of the bronchial tree. The tracked regions are stored in a tree that encodes the anatomical structure of the scene which can be useful to retrieve the path to the lesion that the clinician should follow to do the biopsy. We present a multi-expert validation of our anatomical landmark extraction in 3 intra-operative ultrathin explorations.
Keywords: Lung cancer diagnosis; video-bronchoscopy; airway lumen detection; region tracking
|
|
|
Carles Sanchez, Debora Gil, Jorge Bernal, F. Javier Sanchez, Marta Diez-Ferrer, & Antoni Rosell. (2016). "Navigation Path Retrieval from Videobronchoscopy using Bronchial Branches " In 19th International Conference on Medical Image Computing and Computer Assisted Intervention Workshops (Vol. 9401, pp. 62–70).
Abstract: Bronchoscopy biopsy can be used to diagnose lung cancer without risking complications of other interventions like transthoracic needle aspiration. During bronchoscopy, the clinician has to navigate through the bronchial tree to the target lesion. A main drawback is the difficulty to check whether the exploration is following the correct path. The usual guidance using fluoroscopy implies repeated radiation of the clinician, while alternative systems (like electromagnetic navigation) require specific equipment that increases intervention costs. We propose to compute the navigated path using anatomical landmarks extracted from the sole analysis of videobronchoscopy images. Such landmarks allow matching the current exploration to the path previously planned on a CT to indicate clinician whether the planning is being correctly followed or not. We present a feasibility study of our landmark based CT-video matching using bronchoscopic videos simulated on a virtual bronchoscopy interactive interface.
Keywords: Bronchoscopy navigation; Lumen center; Brochial branches; Navigation path; Videobronchoscopy
|
|