|
Jaume Amores, N. Sebe and Petia Radeva. 2007. Class-Specific Binaryy Correlograms for Object Recognition. British Machine Vision Conference.
|
|
|
Bart M. Ter Haar Romeny and 6 others. 1996. Orientation detection of trabecular bone. Biophysics and Molecular Biology, International Biophysics Congress. Volume 65, pgs. P–H5–43.
|
|
|
Alex Goldhoorn, Arnau Ramisa, Ramon Lopez de Mantaras and Ricardo Toledo. 2007. Using the Average Landmark Vector Method for Robot Homing. Artificial Intelligence Research and Development, Proceedings of the 10th International Conference of the ACIA.331–338.
|
|
|
Jiaolong Xu, Sebastian Ramos, Xu Hu, David Vazquez and Antonio Lopez. 2013. Multi-task Bilinear Classifiers for Visual Domain Adaptation. Advances in Neural Information Processing Systems Workshop.
Abstract: We propose a method that aims to lessen the significant accuracy degradation
that a discriminative classifier can suffer when it is trained in a specific domain (source domain) and applied in a different one (target domain). The principal reason for this degradation is the discrepancies in the distribution of the features that feed the classifier in different domains. Therefore, we propose a domain adaptation method that maps the features from the different domains into a common subspace and learns a discriminative domain-invariant classifier within it. Our algorithm combines bilinear classifiers and multi-task learning for domain adaptation.
The bilinear classifier encodes the feature transformation and classification
parameters by a matrix decomposition. In this way, specific feature transformations for multiple domains and a shared classifier are jointly learned in a multi-task learning framework. Focusing on domain adaptation for visual object detection, we apply this method to the state-of-the-art deformable part-based model for cross domain pedestrian detection. Experimental results show that our method significantly avoids the domain drift and improves the accuracy when compared to several baselines.
Keywords: Domain Adaptation; Pedestrian Detection; ADAS
|
|
|
Fadi Dornaika and Angel Sappa. 2007. Improving Appearance-Based 3D Face Tracking Using Sparse Stereo Data. In J. Braz, A.R., H. Araujo and J. Jorge,, ed. Advances in Computer Graphics and Computer Vision,. Springer Verlag, 354–366.
|
|
|
Dennis G.Romero, Anselmo Frizera, Angel Sappa, Boris X. Vintimilla and Teodiano F.Bastos. 2015. A predictive model for human activity recognition by observing actions and context. Advanced Concepts for Intelligent Vision Systems, Proceedings of 16th International Conference, ACIVS 2015. Springer International Publishing, 323–333. (LNCS.)
Abstract: This paper presents a novel model to estimate human activities — a human activity is defined by a set of human actions. The proposed approach is based on the usage of Recurrent Neural Networks (RNN) and Bayesian inference through the continuous monitoring of human actions and its surrounding environment. In the current work human activities are inferred considering not only visual analysis but also additional resources; external sources of information, such as context information, are incorporated to contribute to the activity estimation. The novelty of the proposed approach lies in the way the information is encoded, so that it can be later associated according to a predefined semantic structure. Hence, a pattern representing a given activity can be defined by a set of actions, plus contextual information or other kind of information that could be relevant to describe the activity. Experimental results with real data are provided showing the validity of the proposed approach.
|
|
|
Daniel Ponsa and Antonio Lopez. 2007. Cascade of Classifiers for Vehicle Detection. Advanced Concepts for Intelligent Vision Systems, LNCS 4678, volume 1, pp. 980–989.
Keywords: vehicle detection
|
|
|
Antonio Lopez, J. Hilgenstock, A. Busse, Ramon Baldrich, Felipe Lumbreras and Joan Serrat. 2008. Nightime Vehicle Detecion for Intelligent Headlight Control. Advanced Concepts for Intelligent Vision Systems, 10th International Conference, Proceedings,.113–124. (LNCS.)
Keywords: Intelligent Headlights; vehicle detection
|
|
|
Monica Piñol, Angel Sappa, Angeles Lopez and Ricardo Toledo. 2012. Feature Selection Based on Reinforcement Learning for Object Recognition. Adaptive Learning Agents Workshop.33–39.
|
|
|
Fernando Barrera, Felipe Lumbreras and Angel Sappa. 2012. Evaluation of Similarity Functions in Multimodal Stereo. 9th International Conference on Image Analysis and Recognition. Springer Berlin Heidelberg, 320–329. (LNCS.)
Abstract: This paper presents an evaluation framework for multimodal stereo matching, which allows to compare the performance of four similarity functions. Additionally, it presents details of a multimodal stereo head that supply thermal infrared and color images, as well as, aspects of its calibration and rectification. The pipeline includes a novel method for the disparity selection, which is suitable for evaluating the similarity functions. Finally, a benchmark for comparing different initializations of the proposed framework is presented. Similarity functions are based on mutual information, gradient orientation and scale space representations. Their evaluation is performed using two metrics: i) disparity error, and ii) number of correct matches on planar regions. In addition to the proposed evaluation, the current paper also shows that 3D sparse representations can be recovered from such a multimodal stereo head.
Keywords: Aveiro, Portugal
|
|