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ABSTRACT
This paper presents a novel method that allows learning the
best feature that describes a given image. It is intended
to be used in object recognition. The proposed approach
is based on the use of a Reinforcement Learning procedure
that selects the best descriptor for every image from a given
set. In order to do this, we introduce a new architecture
joining a Reinforcement Learning technique with a Visual
Object Recognition framework. Furthermore, for the Rein-
forcement Learning, a new convergence and a new strategy
for the exploration-exploitation trade-off is proposed. Com-
parisons show that the performance of the proposed method
improves by about 6.67% with respect to a scheme based
on a single feature descriptor. Improvements in the con-
vergence speed have been also obtained using the proposed
exploration-exploitation trade-off.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Intelligent agents; I.4.8 [Image Processing and
Computer Vision]: Scene Analysis —Object recognition

General Terms
Algorithms, Performance, Experimentation

Keywords
Reinforcement Learning, Object Recognition, Q-Learning,
Visual Feature Descriptors

1. BACKGROUND
Usually, in Visual Object Recognition (VOR), the scenes

are represented in feature spaces where the classification
and/or recognition tasks can be done more efficiently. There

are several representations with different levels of perfor-
mance. Often, the feature space is built around “interest
points” of the scene. The interest points are obtained with
detectors, then, for each “interest point” a descriptor is com-
puted.
Currently, researchers are beginning to work with rein-

forcement learning in computer vision. For instance, several
approaches have been proposed in the image segmentation
field [19, 21, 22]. In all these cases, the reinforcement learn-
ing has been used to tackle the threshold tuning reaching a
similar performance than the state of the art approaches.
There are also some works in the face recognition problem.

For instance, in [8] the authors proposes to learn the set of
dominant features for each image to recognize the faces using
a reinforcement learning based technique.
In the VOR domain, [13] presents a method using bottom-

up and top-down strategies joining Reinforcement Learning
and Ordinal Conditional Functions. A similar approach has
been proposed in [6], which joins Reinforcement Learning
with First Order Logic. In [10] and [11], a new method for
extracting image features is presented. It is based on “inter-
est points” detection, and uses reinforcement learning and
aliasing to distinguish the classes. Finally, in [2] the rein-
forcement learning method is used to select the best clas-
sification in a Bag of Features approach. On the contrary
to previous works, in the current work we propose the use
of a reinforcement learning based method to learn the best
descriptor for each image.
One of the most recent and widely used approach for VOR

is Bag of Features (BoF) [4, 5]. Figure 2(left) shows an illus-
tration of the BoF architecture. In general, a BoF approach
consists of four steps detailed next. In the first step, feature
extraction is carried out by image feature descriptors. In
[15] the performance of descriptors is analysed. The second
step is the creation of a dictionary using visual words from
a training set; and the third step is the image representa-
tion. Both steps are solved with a Vocabulary Tree (VT)
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Figure 1: Scheme of interaction between the agent
and the environment

[17]. The VT defines a hierarchical tree by k-means cluster-
ing. In the algorithm, k defines the branch factor (number of
children of each tree-node) and the process is recursive until
reaching a maximum depth. At any tree level, each cluster
is defined by a dictionary of visual words. The fourth step
is the classification.

The BoF approach does not specify the descriptors and
the classification algorithms. One solution for determining
the descriptors is concatenating all of them, but this solution
introduces noise as well as increase the CPU time. Further-
more, since each image could have different characteristics
of color, texture, edges, etc.; images from the same database
could behave differently when we apply the same descriptor.

This paper proposes a new approach for enhancing the
BoF. The key idea is the introduction of the Reinforcement
Learning technique [20] to learn the best descriptor for each
image. Then, these descriptors are used in a VT scheme,
which is used by a Support Vector Machine (SVM) algo-
rithm for the classification. The reminder of the paper is or-
ganized as follows. Section 2 summarizes the Reinforcement
Learning technique. Then, Section 3 presents the proposed
method. Experimental results are provided in Section 4.
Finally, conclusions and future work are given in Section 5.

2. REINFORCEMENT LEARNING
Reinforcement learning (RL) is a learning method based

on trial and error, where the agent does not have a prior
knowledge about which is the correct action to take. The
underlying model that RL learns is a Markov Decision Pro-
cess (MDP). A MDP is defined as a tuple 〈S,A, δ, τ〉, where:
S is the set of states; A is the set of actions; δ is a tran-
sition function δ:SxA → S ; and τ is a reward/punishment
function τ :SxA → � .

The agent interacts with the environment and selects an
action. Applying the action (ah) at state(sz), the environ-
ment gives a new state (sz+1) and a reward/punishment (rt)
(see Fig. 1). In order to maximize the expected reward, the
agent selects the best action ah based on the τ(sz, ah) pro-
vided by τ :SxA → �.

Different methods have been proposed in the literature
for solving the RL problem: dynamic programming, Monte
Carlo methods, and temporal difference learning. In the
current work a temporal difference learning based method
has been selected since it does not require a model and it is
fully incremental [23]. In concrete, our framework is based
on the Q-learning algorithm [25]. In this case, the agent
learns the action policy π:S−→A, where π maps the current
state sz into an optimal action ah to maximize the expected
long term reward.

The Q-learning proposes a strategy to learn an optimal
policy π∗, when the δ function (δ:SxA → S) and τ function

(τ :SxA → �) are not known a priori. The optimal policy
is π∗ = argmaxa′Q(s, a′), where Q is the evaluation func-
tion the agent is learning. Note that since δ and/or τ are
nondeterministic, the environment should be represented in
a nondeterministic way. Hence, we can write the Q in a
nondeterministic environment as follows:

Qn(sz, ah) ←− (1 − αn)Qn−1(sz, ah)+

αn[r + γmax
a′ Qn−1(sz+1, a

′)], (1)

αn =
1

1 + visitsn(sz, ah)
, (2)

where 0 ≤ γ < 1 is a discount factor for future reinforce-
ments. The Eq. (2) is the value αn for a nondeterministic
world and visits is the number of iterations visiting the Q-
table at the tuple (sz, ah) [16].
Since, in this problem is not feasible to update the Q-

table using the Eq. (1), because the current state (sz) is
only affected by the previous visits (first order MDP), the
expression in Eq. (1) is modified by Eq. (3).

Qn(sz, ah) ←− (1 − αn)Qn−1(sz, ah)+

αn[r + γmax
a′ Qn−1(sz, a

′)], (3)

where 0 ≤ γ < 1 and αn is defined as in Eq. (2).

3. PROPOSED METHOD
This paper proposes a new method where the agent learns

the best descriptor for each image. Figure 2 shows an illus-
tration of the proposed scheme. The most important ele-
ments of the proposed approach are detailed in this section.
First, the elements defining the tuple are introduced. Then,
the proposed convergence strategy is presented. Next, the
exploration-exploitation trade-off to select the actions is in-
troduced. Finally, the training stage is summarized. Note
the proposed method does not follow a classical RL based
scheme where an action (ah) and a reward/punishment (rz),
for a given state, produce a new state. In our case, after ap-
plying a given action, the Q-table is updated but it does not
result in a new state, hence a new image is considered. The
different stages are detailed next.

3.1 Tuple definition
The tuple that defines our MDP is 〈S,A, δ, τ〉. The vari-

ables of the tuple are:

3.1.1 State definition, S
In our case, the state is a representation of the image.

Many different image features can be used as a state. In
our experiments, we convert the color image to grey scale
image. Then, we extract mean, standard deviation and me-
dian values from that image (Fig. 3(a)). After that, the pro-
cess is applied again by splitting the image into four equally
sized squared blocks, and, for each sub-image, we extract
again the mean, standard deviation and median values (as
depicted in Fig. 3(b)). Additionally, the number of corners
(Fig. 3(c)) and the number of blobs (Fig. 3(d)) using the
whole grey scale image (Fig. 3(a)) are extracted. The cor-
ners are obtained using a Harris corner detector [9], while
blobs are obtained converting grey scale image to black and
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Figure 2: Illustration of the proposed scheme for image classification using Q-learning

white using OTSU threshold [18] and then, the labelling al-
gorithm (bwlabel) with a connectivity of 8 neighbours [7] is
applied. The result gives a vector of 17 dimensions with the
following shape:

〈 meanL1 , stdL1 , medianL1 , mean(1,1)L2
, std(1,1)L2

, ... ,
median(2,2)L2

, ncorners, nblobs 〉 .

This state definition is highly discriminative among im-
ages. Since the database could contain thousand of images,
the size of the Q-table could be huge. To solve this problem,
we propose a k-means clustering of the vectors and use the
centroid of each cluster as a state (S = {sz}0<z<ncentroids),
instead of using all the vectors’ components. The size of the
Q-table is determined by the number of clusters.

3.1.2 Action definition, A
In the current work, the actions A = { ah}0<h<u are de-

scriptors, where u is the size of the descriptor set. In other
words, our agent learns which descriptor gives the best in-
formation for each image. Our architecture is flexible and
does not depend on a particular set of descriptors. In the
current work, the descriptors used as actions are based on
gradients, blobs and patterns, although other combinations
could be also used. The four descriptors selected to test the
proposed architecture are as follow:

• SIFT (Scale-Invariant Feature Transform): finds scale
invariant regions using the magnitude of the gradient
[14].

• Spin: the descriptor makes a histogram of quantized
pixels locations and intensity values. This descriptor
finds textures [12].

• SURF (Speeded Up Robust Feature): is based on sums
of 2D Haar wavelet responses and is efficiently com-
puted using integral images [1].

(a) (b)

(c) (d)

Figure 3: Illustration of an image of the database.
(a) Original gray level image. (b) Image split up into
four equally sized squared blocks. (c) The corners
detected in the image. (d) The blobs detected in the
image.

• PHOW (Pyramid Histogram Of visual Words): is a
variant of dense SIFT descriptors, extracted at multi-
ple scales [3].

3.1.3 δ function
The classical Q-learning formulation involves a δ function,

which for a given state (sz) and an action (ah), it returns a
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new state (δ : SxA → S).
In our case, given an image from the given data set (Isz ),

the δ function does not give a new state, instead, the output
is a new representation of the image (I ′

sz ). Also, two dif-
ferent images at the same state (centroid) and applying the
same action, usually, leads to different representation (see
the example in Fig. 4). For this reason, the δ function is
nondeterministic.

(a) apple (b)

(c) apple (d)

(e) tomato (f)

Figure 4: (left− column) Illustration of three images
from the database. Although these images belong
to different classes, their centroid lies in the same
position. Hence, they are classified into the same
cluster. (right−column) The image patches obtained
applying the same action: SIFT.

Once δ function is applied the learning process continues
with the classification step. The BoF uses the new represen-
tation of the image(I ′

sz ) to classify the object through the
VT and SVM. Once the object has been classified, the it-
eration is finished and the process continues through a new
image as a new iteration.

3.1.4 τ function
The agent decides the class of the image. The τ function

returns a reward when the decision of the agent matches the
ground truth, and, when the decision of the agent differs,
the function returns a punishment. The τ function is also

a nondeterministic function. During the process, we cannot
ensure that two images at the same state (sz) and doing the
same action (ah) lead to the same τ(sz, ah) [16].
For example, in Fig. 4 using the action SIFT over the

three images gives the same reward because the VT correctly
classifies all of them. But, if we repeat the same example
changing the action SIFT by SURF, the first image (Fig.
4(a)) is within the class apple but the VT returns tomato.
For the second image (Fig. 4(c)), the VT hits the class.
Finally, the third image (Fig. 4(e)) is a tomato but the
VT returns apple. Hence, using SURF, for the image (Fig.
4(c)) results in a reward but in the other two images (Fig.
4(a) and Fig. 4(e)) the process gives a punishment. In the
current implementation τ is defined as (+1000) when the
image is correctly classified and (−1000) when it is wrongly
classified.

3.2 Convergence
The theorem“Convergence of Q-learning for nondetermin-

istic Markov decision processes” [16] shows that a nondeter-
ministic MDP converges when there is a bounded reward
(∀(s, a), |r(s, a)| ≤ c and 0 < αn ≤ 1). Eq. (4) is true in the
ith iteration when n −→ ∞ with probability 1.

∞∑

i

αn(i, s, a) = ∞,

∞∑

i

[αn(i, s, a)]
2 ≤ ∞. (4)

In our framework, the agent interacts with a nondetermin-
istic environment, so, the convergence is very expensive in
time. For example, in [16] we can see that the Tesauro’s TD-
GAMMON needs for training 1.5 million of backgammon
games iterations and each of them contains tens of state-
action transitions. As the convergence can last for weeks,
we need some criteria to stop the training. Thus, in the
current work it is proposed to stop the training when the
following criterion is achieved:

w∑

i=n−w

|Qn+1(s, a) − Qn(s, a)|i < θ, (5)

the sliding window provides a restricted convergence. Where,
w is the size of the sliding window and θ is the admitted er-
ror.

3.3 Exploration-exploitation trade-off
This section presents the action selection; in general, it is

referred to as exploration-exploitation trade-off. If the agent
uses only the exploration strategy it could fall into a local
maximum. To avoid this problem, the RL learns some steps
with an exploitation strategy.
An ε-greedy scheme is generally used as an exploitation

strategy. In this paper, we propose a method to compute ε
adaptively. We propose the measurement of the error as the
parameter for switching the strategy. We define the error
as e = f(it), where f is defined as: f(it) = |Qit − Qit−1|;
and, for each iteration we store this error. The ideal process
reduces the error for each iteration, but sometimes the error
increases (see Fig. 5).
We propose to calculate eit and use this value as a switch-

ing indicator: eit − eit−1 > threshold. However, to avoid
switches when the error is a small spike, we propose to con-
sider also the error in the neighborhood of current iteration.
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Figure 5: Behavior of eit, till convergence is reached,
for different iterations.

Hence, a sliding windows (w′) is used as indicated in Eq.
(6). In other words, if the following condition is fulfilled
current strategy is switched to exploitation trade-off.

w′∑

i=0

eit−i >

w′+1∑

i=1

eit−i, (6)

where, like in Eq. (5), w′ is the size of the sliding windows
(in the current implementation w′ = 5).

3.4 Training
In order to train and test our approach, we have consid-

ered an image database and a set of descriptors widely used
in the computer vision literature [1, 3, 12, 14]. The image
database is split up into three sets: vocabulary tree training
set (VTTS), Q-table training set (QTTS), and testing set.
The first training is using the VTTS, a tree is built for

each descriptor (Tah) using a BoF approach with VT and
SVM [24].

The second training starts initializing the Q-table and
the method is depicted in Fig. 2. Given an image from
QTTS, the agent extracts the state (sz) and using the Q-
table and the exploration-exploitation strategy decides the
action (ah). The agent extracts the features using the de-
scriptor (ah) and classifies the image into one class. To
do the classification, we use the pair (Tah , ah). When the
agent obtains a class, the agent compares this class with the
ground truth and obtains the reward/punishment rt through
τ(sz, ah). Finally, the agent computes the convergence (Eq.
(5)) and then, the agent updates the Q-table using Eq. (3).

4. RESULTS
The ETH database has been used to evaluate the pro-

posed approach. Nine classes from that database have been
selected: apple, car, cow, cowcup, cup, dog, horse, pear and
tomato. Figure 6 shows some images of the database.

We have used 45 images per class, which were split into
three sets: 15 images for training VT, 15 images for training
the Q-table and finally, 15 images for testing. We have re-
peated the experiments fifteen times, using this three image
sets. The process of testing starts when the Q-table achieves
the convergence (Eq. (5), with θ = 0.4 ).

Figure 6: Illustration from ETH database

Given a testing image, the process extracts the state and
selects the action. To select the best action, the process
searches the maximum value in the Q-table for this state.
But sometimes, the Q-table does not have an unique max-
imum, to solve this problem, we introduce a vector with
weights. The vector of weights is multiplied by the Q-table
to obtain more distance between the actions.
In order to compare the results, we have measured the

performance of each action (Table 1). Firstly, using as an
action always the same descriptor. Secondly, the descriptor
resulting from Q-learning is used. Note that other strategies
could be considered for the comparisons, for instance consid-
ering as an action all the descriptors at once. However, this
kind of strategy will introduce noise as well as will increase
the CPU time.
The best result using a single descriptor as an action for

the ETH database is PHOW with a performance of 74.81%.
The proposed Q-learning scheme has been evaluated using
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Table 1: Performance for each action and using the
Q-table (Performance: percentage of success during
the classification)

Action Performance

Spin 60.00%
SIFT 61.48%
SURF 62.96%
PHOW 74.81%

Q-learning 81.48%

Figure 7: Confusion matrix with ε = 0.5 exploration-
exploitation strategy; it achieves a performance of
81.48%

two different exploration-exploitation strategies. Firstly, an
exploration-exploitation trade-off with ε = 0.5 has been
used. It reaches a performance of 81.48%. The value ε
has been set empirically; actually, other values have been
tested (e.g., 0.2) reaching the similar results but increasing
the number of iterations and consequently the CPU time.
Figure 7 shows the confusion matrix.

The second experiment was done with the exploration-
exploitation strategy presented in Section 3.3; in this case
we also reach the same performance (81.48%). However, it
should be noticed that the proposed approach converges in
less iterations as depicted in Table 2, which shows the num-
ber of iterations needed for each exploration-exploitation
strategy. The usual strategy needs more than 40.000 it-
erations to arrive at the same convergence state.

Table 2: Number of iterations for each strategy us-
ing θ = 0.4

Strategy Number of iterations

ε = 0.5 168.419
History of the error 127.710

5. CONCLUSIONS AND FUTURE WORK
In this paper a novel method to learn the best descriptor

for each image in a database has been presented. A new
architecture joining the Reinforcement Learning and Bag
of Features is proposed. Additionally, a new exploration-
exploitation strategy is introduced. The proposed approach
has been validated using the ETH database. Its perfor-
mance has been compared with respect to a single descrip-
tor scheme. The best descriptor for the ETH database is
PHOW with 74.81% of performance, while the proposed me-
thod reaches 81.48%. Therefore, the results are improved in
almost 7% using the proposed method. Additionally, a strat-
egy for exploration-exploitation is proposed that makes the
convergence faster than using random switches.
Future work will be focused on the exploration of other

state definition, and also, on the increase of the set of de-
scriptors (e.g., H-mat, GIST, Centrist, etc. are some of the
descriptors to be considered). The proposed method will be
tested with databases containing different backgrounds. Fi-
nally, the possibility of selecting the actions without random
values will be studied.
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