|
Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez and Vladlen Koltun. 2017. CARLA: An Open Urban Driving Simulator. 1st Annual Conference on Robot Learning. Proceedings of Machine Learning.1–16.
Abstract: We introduce CARLA, an open-source simulator for autonomous driving research. CARLA has been developed from the ground up to support development, training, and validation of autonomous urban driving systems. In addition to open-source code and protocols, CARLA provides open digital assets (urban layouts, buildings, vehicles) that were created for this purpose and can be used freely. The simulation platform supports flexible specification of sensor suites and environmental conditions. We use CARLA to study the performance of three approaches to autonomous driving: a classic modular pipeline, an endto-end
model trained via imitation learning, and an end-to-end model trained via
reinforcement learning. The approaches are evaluated in controlled scenarios of
increasing difficulty, and their performance is examined via metrics provided by CARLA, illustrating the platform’s utility for autonomous driving research.
Keywords: Autonomous driving; sensorimotor control; simulation
|
|
|
David Aldavert, Marçal Rusiñol and Ricardo Toledo. 2017. Automatic Static/Variable Content Separation in Administrative Document Images. 14th International Conference on Document Analysis and Recognition.
Abstract: In this paper we present an automatic method for separating static and variable content from administrative document images. An alignment approach is able to unsupervisedly build probabilistic templates from a set of examples of the same document kind. Such templates define which is the likelihood of every pixel of being either static or variable content. In the extraction step, the same alignment technique is used to match
an incoming image with the template and to locate the positions where variable fields appear. We validate our approach on the public NIST Structured Tax Forms Dataset.
|
|
|
Patricia Suarez, Angel Sappa and Boris X. Vintimilla. 2017. Colorizing Infrared Images through a Triplet Conditional DCGAN Architecture. 19th international conference on image analysis and processing.
Abstract: This paper focuses on near infrared (NIR) image colorization by using a Conditional Deep Convolutional Generative Adversarial Network (CDCGAN) architecture model. The proposed architecture is based on the usage of a conditional probabilistic generative model. Firstly, it learns to colorize the given input image, by using a triplet model architecture that tackle every channel in an independent way. In the proposed model, the nal layer of red channel consider the infrared image to enhance the details, resulting in a sharp RGB image. Then, in the second stage, a discriminative model is used to estimate the probability that the generated image came from the training dataset, rather than the image automatically generated. Experimental results with a large set of real images are provided showing the validity of the proposed approach. Additionally, the proposed approach is compared with a state of the art approach showing better results.
Keywords: CNN in Multispectral Imaging; Image Colorization
|
|
|
Marc Masana, Joost Van de Weijer, Luis Herranz, Andrew Bagdanov and Jose Manuel Alvarez. 2017. Domain-adaptive deep network compression. 17th IEEE International Conference on Computer Vision.
Abstract: Deep Neural Networks trained on large datasets can be easily transferred to new domains with far fewer labeled examples by a process called fine-tuning. This has the advantage that representations learned in the large source domain can be exploited on smaller target domains. However, networks designed to be optimal for the source task are often prohibitively large for the target task. In this work we address the compression of networks after domain transfer.
We focus on compression algorithms based on low-rank matrix decomposition. Existing methods base compression solely on learned network weights and ignore the statistics of network activations. We show that domain transfer leads to large shifts in network activations and that it is desirable to take this into account when compressing.
We demonstrate that considering activation statistics when compressing weights leads to a rank-constrained regression problem with a closed-form solution. Because our method takes into account the target domain, it can more optimally
remove the redundancy in the weights. Experiments show that our Domain Adaptive Low Rank (DALR) method significantly outperforms existing low-rank compression techniques. With our approach, the fc6 layer of VGG19 can be compressed more than 4x more than using truncated SVD alone – with only a minor or no loss in accuracy. When applied to domain-transferred networks it allows for compression down to only 5-20% of the original number of parameters with only a minor drop in performance.
|
|
|
Muhammad Anwer Rao, Fahad Shahbaz Khan, Joost Van de Weijer and Jorma Laaksonen. 2017. Tex-Nets: Binary Patterns Encoded Convolutional Neural Networks for Texture Recognition. 19th International Conference on Multimodal Interaction.
Abstract: Recognizing materials and textures in realistic imaging conditions is a challenging computer vision problem. For many years, local features based orderless representations were a dominant approach for texture recognition. Recently deep local features, extracted from the intermediate layers of a Convolutional Neural Network (CNN), are used as filter banks. These dense local descriptors from a deep model, when encoded with Fisher Vectors, have shown to provide excellent results for texture recognition. The CNN models, employed in such approaches, take RGB patches as input and train on a large amount of labeled images. We show that CNN models, which we call TEX-Nets, trained using mapped coded images with explicit texture information provide complementary information to the standard deep models trained on RGB patches. We further investigate two deep architectures, namely early and late fusion, to combine the texture and color information. Experiments on benchmark texture datasets clearly demonstrate that TEX-Nets provide complementary information to standard RGB deep network. Our approach provides a large gain of 4.8%, 3.5%, 2.6% and 4.1% respectively in accuracy on the DTD, KTH-TIPS-2a, KTH-TIPS-2b and Texture-10 datasets, compared to the standard RGB network of the same architecture. Further, our final combination leads to consistent improvements over the state-of-the-art on all four datasets.
Keywords: Convolutional Neural Networks; Texture Recognition; Local Binary Paterns
|
|
|
Muhammad Anwer Rao, Fahad Shahbaz Khan, Joost Van de Weijer and Jorma Laaksonen. 2017. Top-Down Deep Appearance Attention for Action Recognition. 20th Scandinavian Conference on Image Analysis.297–309. (LNCS.)
Abstract: Recognizing human actions in videos is a challenging problem in computer vision. Recently, convolutional neural network based deep features have shown promising results for action recognition. In this paper, we investigate the problem of fusing deep appearance and motion cues for action recognition. We propose a video representation which combines deep appearance and motion based local convolutional features within the bag-of-deep-features framework. Firstly, dense deep appearance and motion based local convolutional features are extracted from spatial (RGB) and temporal (flow) networks, respectively. Both visual cues are processed in parallel by constructing separate visual vocabularies for appearance and motion. A category-specific appearance map is then learned to modulate the weights of the deep motion features. The proposed representation is discriminative and binds the deep local convolutional features to their spatial locations. Experiments are performed on two challenging datasets: JHMDB dataset with 21 action classes and ACT dataset with 43 categories. The results clearly demonstrate that our approach outperforms both standard approaches of early and late feature fusion. Further, our approach is only employing action labels and without exploiting body part information, but achieves competitive performance compared to the state-of-the-art deep features based approaches.
Keywords: Action recognition; CNNs; Feature fusion
|
|
|
Cesar de Souza, Adrien Gaidon, Yohann Cabon and Antonio Lopez. 2017. Procedural Generation of Videos to Train Deep Action Recognition Networks. 30th IEEE Conference on Computer Vision and Pattern Recognition.2594–2604.
Abstract: Deep learning for human action recognition in videos is making significant progress, but is slowed down by its dependency on expensive manual labeling of large video collections. In this work, we investigate the generation of synthetic training data for action recognition, as it has recently shown promising results for a variety of other computer vision tasks. We propose an interpretable parametric generative model of human action videos that relies on procedural generation and other computer graphics techniques of modern game engines. We generate a diverse, realistic, and physically plausible dataset of human action videos, called PHAV for ”Procedural Human Action Videos”. It contains a total of 39, 982 videos, with more than 1, 000 examples for each action of 35 categories. Our approach is not limited to existing motion capture sequences, and we procedurally define 14 synthetic actions. We introduce a deep multi-task representation learning architecture to mix synthetic and real videos, even if the action categories differ. Our experiments on the UCF101 and HMDB51 benchmarks suggest that combining our large set of synthetic videos with small real-world datasets can boost recognition performance, significantly
outperforming fine-tuning state-of-the-art unsupervised generative models of videos.
|
|
|
Konstantia Georgouli, Katerine Diaz, Jesus Martinez del Rincon and Anastasios Koidis. 2017. Building generic, easily-updatable chemometric models with harmonisation and augmentation features: The case of FTIR vegetable oils classification. 3rd Ιnternational Conference Metrology Promoting Standardization and Harmonization in Food and Nutrition.
|
|
|
David Aldavert and Marçal Rusiñol. 2018. Manuscript text line detection and segmentation using second-order derivatives analysis. 13th IAPR International Workshop on Document Analysis Systems.293–298.
Abstract: In this paper, we explore the use of second-order derivatives to detect text lines on handwritten document images. Taking advantage that the second derivative gives a minimum response when a dark linear element over a
bright background has the same orientation as the filter, we use this operator to create a map with the local orientation and strength of putative text lines in the document. Then, we detect line segments by selecting and merging the filter responses that have a similar orientation and scale. Finally, text lines are found by merging the segments that are within the same text region. The proposed segmentation algorithm, is learning-free while showing a performance similar to the state of the art methods in publicly available datasets.
Keywords: text line detection; text line segmentation; text region detection; second-order derivatives
|
|
|
David Aldavert and Marçal Rusiñol. 2018. Synthetically generated semantic codebook for Bag-of-Visual-Words based word spotting. 13th IAPR International Workshop on Document Analysis Systems.223–228.
Abstract: Word-spotting methods based on the Bag-ofVisual-Words framework have demonstrated a good retrieval performance even when used in a completely unsupervised manner. Although unsupervised approaches are suitable for
large document collections due to the cost of acquiring labeled data, these methods also present some drawbacks. For instance, having to train a suitable “codebook” for a certain dataset has a high computational cost. Therefore, in
this paper we present a database agnostic codebook which is trained from synthetic data. The aim of the proposed approach is to generate a codebook where the only information required is the type of script used in the document. The use of synthetic data also allows to easily incorporate semantic
information in the codebook generation. So, the proposed method is able to determine which set of codewords have a semantic representation of the descriptor feature space. Experimental results show that the resulting codebook attains a state-of-the-art performance while having a more compact representation.
Keywords: Word Spotting; Bag of Visual Words; Synthetic Codebook; Semantic Information
|
|