|
Victor Campmany, Sergio Silva, Juan Carlos Moure, Toni Espinosa, David Vazquez and Antonio Lopez. 2016. GPU-based pedestrian detection for autonomous driving. GPU Technology Conference.
Abstract: Pedestrian detection for autonomous driving is one of the hardest tasks within computer vision, and involves huge computational costs. Obtaining acceptable real-time performance, measured in frames per second (fps), for the most advanced algorithms is nowadays a hard challenge. Taking the work in [1] as our baseline, we propose a CUDA implementation of a pedestrian detection system that includes LBP and HOG as feature descriptors and SVM and Random forest as classifiers. We introduce significant algorithmic adjustments and optimizations to adapt the problem to the NVIDIA GPU architecture. The aim is to deploy a real-time system providing reliable results.
Keywords: Pedestrian Detection; GPU
|
|
|
David Vazquez, Antonio Lopez and Daniel Ponsa. 2012. Unsupervised Domain Adaptation of Virtual and Real Worlds for Pedestrian Detection. 21st International Conference on Pattern Recognition. Tsukuba Science City, JAPAN, IEEE, 3492–3495.
Abstract: Vision-based object detectors are crucial for different applications. They rely on learnt object models. Ideally, we would like to deploy our vision system in the scenario where it must operate, and lead it to self-learn how to distinguish the objects of interest, i.e., without human intervention. However, the learning of each object model requires labelled samples collected through a tiresome manual process. For instance, we are interested in exploring the self-training of a pedestrian detector for driver assistance systems. Our first approach to avoid manual labelling consisted in the use of samples coming from realistic computer graphics, so that their labels are automatically available [12]. This would make possible the desired self-training of our pedestrian detector. However, as we showed in [14], between virtual and real worlds it may be a dataset shift. In order to overcome it, we propose the use of unsupervised domain adaptation techniques that avoid human intervention during the adaptation process. In particular, this paper explores the use of the transductive SVM (T-SVM) learning algorithm in order to adapt virtual and real worlds for pedestrian detection (Fig. 1).
Keywords: Pedestrian Detection; Domain Adaptation; Virtual worlds
|
|
|
Javier Marin, David Vazquez, David Geronimo and Antonio Lopez. 2010. Learning Appearance in Virtual Scenarios for Pedestrian Detection. 23rd IEEE Conference on Computer Vision and Pattern Recognition.137–144.
Abstract: Detecting pedestrians in images is a key functionality to avoid vehicle-to-pedestrian collisions. The most promising detectors rely on appearance-based pedestrian classifiers trained with labelled samples. This paper addresses the following question: can a pedestrian appearance model learnt in virtual scenarios work successfully for pedestrian detection in real images? (Fig. 1). Our experiments suggest a positive answer, which is a new and relevant conclusion for research in pedestrian detection. More specifically, we record training sequences in virtual scenarios and then appearance-based pedestrian classifiers are learnt using HOG and linear SVM. We test such classifiers in a publicly available dataset provided by Daimler AG for pedestrian detection benchmarking. This dataset contains real world images acquired from a moving car. The obtained result is compared with the one given by a classifier learnt using samples coming from real images. The comparison reveals that, although virtual samples were not specially selected, both virtual and real based training give rise to classifiers of similar performance.
Keywords: Pedestrian Detection; Domain Adaptation
|
|
|
David Vazquez, Jiaolong Xu, Sebastian Ramos, Antonio Lopez and Daniel Ponsa. 2013. Weakly Supervised Automatic Annotation of Pedestrian Bounding Boxes. CVPR Workshop on Ground Truth – What is a good dataset?. IEEE, 706–711.
Abstract: Among the components of a pedestrian detector, its trained pedestrian classifier is crucial for achieving the desired performance. The initial task of the training process consists in collecting samples of pedestrians and background, which involves tiresome manual annotation of pedestrian bounding boxes (BBs). Thus, recent works have assessed the use of automatically collected samples from photo-realistic virtual worlds. However, learning from virtual-world samples and testing in real-world images may suffer the dataset shift problem. Accordingly, in this paper we assess an strategy to collect samples from the real world and retrain with them, thus avoiding the dataset shift, but in such a way that no BBs of real-world pedestrians have to be provided. In particular, we train a pedestrian classifier based on virtual-world samples (no human annotation required). Then, using such a classifier we collect pedestrian samples from real-world images by detection. After, a human oracle rejects the false detections efficiently (weak annotation). Finally, a new classifier is trained with the accepted detections. We show that this classifier is competitive with respect to the counterpart trained with samples collected by manually annotating hundreds of pedestrian BBs.
Keywords: Pedestrian Detection; Domain Adaptation
|
|
|
Jiaolong Xu, David Vazquez, Sebastian Ramos, Antonio Lopez and Daniel Ponsa. 2013. Adapting a Pedestrian Detector by Boosting LDA Exemplar Classifiers. CVPR Workshop on Ground Truth – What is a good dataset?.688–693.
Abstract: Training vision-based pedestrian detectors using synthetic datasets (virtual world) is a useful technique to collect automatically the training examples with their pixel-wise ground truth. However, as it is often the case, these detectors must operate in real-world images, experiencing a significant drop of their performance. In fact, this effect also occurs among different real-world datasets, i.e. detectors' accuracy drops when the training data (source domain) and the application scenario (target domain) have inherent differences. Therefore, in order to avoid this problem, it is required to adapt the detector trained with synthetic data to operate in the real-world scenario. In this paper, we propose a domain adaptation approach based on boosting LDA exemplar classifiers from both virtual and real worlds. We evaluate our proposal on multiple real-world pedestrian detection datasets. The results show that our method can efficiently adapt the exemplar classifiers from virtual to real world, avoiding drops in average precision over the 15%.
Keywords: Pedestrian Detection; Domain Adaptation
|
|
|
Muhammad Anwer Rao, David Vazquez and Antonio Lopez. 2011. Opponent Colors for Human Detection. In J. Vitria, J.M. Sanches and M. Hernandez, eds. 5th Iberian Conference on Pattern Recognition and Image Analysis. Berlin Heidelberg, Springer, 363–370. (LNCS.)
Abstract: Human detection is a key component in fields such as advanced driving assistance and video surveillance. However, even detecting non-occluded standing humans remains a challenge of intensive research. Finding good features to build human models for further detection is probably one of the most important issues to face. Currently, shape, texture and motion features have deserve extensive attention in the literature. However, color-based features, which are important in other domains (e.g., image categorization), have received much less attention. In fact, the use of RGB color space has become a kind of choice by default. The focus has been put in developing first and second order features on top of RGB space (e.g., HOG and co-occurrence matrices, resp.). In this paper we evaluate the opponent colors (OPP) space as a biologically inspired alternative for human detection. In particular, by feeding OPP space in the baseline framework of Dalal et al. for human detection (based on RGB, HOG and linear SVM), we will obtain better detection performance than by using RGB space. This is a relevant result since, up to the best of our knowledge, OPP space has not been previously used for human detection. This suggests that in the future it could be worth to compute co-occurrence matrices, self-similarity features, etc., also on top of OPP space, i.e., as we have done with HOG in this paper.
Keywords: Pedestrian Detection; Color; Part Based Models
|
|
|
Muhammad Anwer Rao, David Vazquez and Antonio Lopez. 2011. Color Contribution to Part-Based Person Detection in Different Types of Scenarios. In P. Real, D.D., H. Molina, A. Berciano, W. Kropatsch, ed. 14th International Conference on Computer Analysis of Images and Patterns. Berlin Heidelberg, Springer, 463–470.
Abstract: Camera-based person detection is of paramount interest due to its potential applications. The task is diffcult because the great variety of backgrounds (scenarios, illumination) in which persons are present, as well as their intra-class variability (pose, clothe, occlusion). In fact, the class person is one of the included in the popular PASCAL visual object classes (VOC) challenge. A breakthrough for this challenge, regarding person detection, is due to Felzenszwalb et al. These authors proposed a part-based detector that relies on histograms of oriented gradients (HOG) and latent support vector machines (LatSVM) to learn a model of the whole human body and its constitutive parts, as well as their relative position. Since the approach of Felzenszwalb et al. appeared new variants have been proposed, usually giving rise to more complex models. In this paper, we focus on an issue that has not attracted suficient interest up to now. In particular, we refer to the fact that HOG is usually computed from RGB color space, but other possibilities exist and deserve the corresponding investigation. In this paper we challenge RGB space with the opponent color space (OPP), which is inspired in the human vision system.We will compute the HOG on top of OPP, then we train and test the part-based human classifer by Felzenszwalb et al. using PASCAL VOC challenge protocols and person database. Our experiments demonstrate that OPP outperforms RGB. We also investigate possible differences among types of scenarios: indoor, urban and countryside. Interestingly, our experiments suggest that the beneficts of OPP with respect to RGB mainly come for indoor and countryside scenarios, those in which the human visual system was designed by evolution.
Keywords: Pedestrian Detection; Color
|
|
|
Victor Campmany, Sergio Silva, Antonio Espinosa, Juan Carlos Moure, David Vazquez and Antonio Lopez. 2016. GPU-based pedestrian detection for autonomous driving. 16th International Conference on Computational Science.2377–2381.
Abstract: We propose a real-time pedestrian detection system for the embedded Nvidia Tegra X1 GPU-CPU hybrid platform. The pipeline is composed by the following state-of-the-art algorithms: Histogram of Local Binary Patterns (LBP) and Histograms of Oriented Gradients (HOG) features extracted from the input image; Pyramidal Sliding Window technique for foreground segmentation; and Support Vector Machine (SVM) for classification. Results show a 8x speedup in the target Tegra X1 platform and a better performance/watt ratio than desktop CUDA platforms in study.
Keywords: Pedestrian detection; Autonomous Driving; CUDA
|
|
|
David Geronimo, Angel Sappa, Antonio Lopez and Daniel Ponsa. 2007. Adaptive Image Sampling and Windows Classification for On-board Pedestrian Detection. Proceedings of the 5th International Conference on Computer Vision Systems.
Abstract: On–board pedestrian detection is in the frontier of the state–of–the–art since it implies processing outdoor scenarios from a mobile platform and searching for aspect–changing objects in cluttered urban environments. Most promising approaches include the development of classifiers based on feature selection and machine learning. However, they use a large number of features which compromises real–time. Thus, methods for running the classifiers in only a few image windows must be provided. In this paper we contribute in both aspects, proposing a camera
pose estimation method for adaptive sparse image sampling, as well as a classifier for pedestrian detection based on Haar wavelets and edge orientation histograms as features and AdaBoost as learning machine. Both proposals are compared with relevant approaches in the literature, showing comparable results but reducing processing time by four for the sampling tasks and by ten for the classification one.
Keywords: Pedestrian Detection
|
|
|
David Geronimo, Antonio Lopez and Angel Sappa. 2007. Computer Vision Approaches for Pedestrian Detection: Visible Spectrum Survey. In J. Marti et al., ed. 3rd Iberian Conference on Pattern Recognition and Image Analysis, LNCS 4477.547–554.
Abstract: Pedestrian detection from images of the visible spectrum is a high relevant area of research given its potential impact in the design of pedestrian protection systems. There are many proposals in the literature but they lack a comparative viewpoint. According to this, in this paper we first propose a common framework where we fit the different approaches, and second we use this framework to provide a comparative point of view of the details of such different approaches, pointing out also the main challenges to be solved in the future. In summary, we expect
this survey to be useful for both novel and experienced researchers in the field. In the first case, as a clarifying snapshot of the state of the art; in the second, as a way to unveil trends and to take conclusions from the comparative study.
Keywords: Pedestrian detection
|
|