|
German Ros, Laura Sellart, Joanna Materzynska, David Vazquez and Antonio Lopez. 2016. The SYNTHIA Dataset: A Large Collection of Synthetic Images for Semantic Segmentation of Urban Scenes. 29th IEEE Conference on Computer Vision and Pattern Recognition.3234–3243.
Abstract: Vision-based semantic segmentation in urban scenarios is a key functionality for autonomous driving. The irruption of deep convolutional neural networks (DCNNs) allows to foresee obtaining reliable classifiers to perform such a visual task. However, DCNNs require to learn many parameters from raw images; thus, having a sufficient amount of diversified images with this class annotations is needed. These annotations are obtained by a human cumbersome labour specially challenging for semantic segmentation, since pixel-level annotations are required. In this paper, we propose to use a virtual world for automatically generating realistic synthetic images with pixel-level annotations. Then, we address the question of how useful can be such data for the task of semantic segmentation; in particular, when using a DCNN paradigm. In order to answer this question we have generated a synthetic diversified collection of urban images, named SynthCity, with automatically generated class annotations. We use SynthCity in combination with publicly available real-world urban images with manually provided annotations. Then, we conduct experiments on a DCNN setting that show how the inclusion of SynthCity in the training stage significantly improves the performance of the semantic segmentation task
Keywords: Domain Adaptation; Autonomous Driving; Virtual Data; Semantic Segmentation
|
|
|
Cesar de Souza, Adrien Gaidon, Yohann Cabon and Antonio Lopez. 2017. Procedural Generation of Videos to Train Deep Action Recognition Networks. 30th IEEE Conference on Computer Vision and Pattern Recognition.2594–2604.
Abstract: Deep learning for human action recognition in videos is making significant progress, but is slowed down by its dependency on expensive manual labeling of large video collections. In this work, we investigate the generation of synthetic training data for action recognition, as it has recently shown promising results for a variety of other computer vision tasks. We propose an interpretable parametric generative model of human action videos that relies on procedural generation and other computer graphics techniques of modern game engines. We generate a diverse, realistic, and physically plausible dataset of human action videos, called PHAV for ”Procedural Human Action Videos”. It contains a total of 39, 982 videos, with more than 1, 000 examples for each action of 35 categories. Our approach is not limited to existing motion capture sequences, and we procedurally define 14 synthetic actions. We introduce a deep multi-task representation learning architecture to mix synthetic and real videos, even if the action categories differ. Our experiments on the UCF101 and HMDB51 benchmarks suggest that combining our large set of synthetic videos with small real-world datasets can boost recognition performance, significantly
outperforming fine-tuning state-of-the-art unsupervised generative models of videos.
|
|
|
Lorenzo Porzi, Markus Hofinger, Idoia Ruiz, Joan Serrat, Samuel Rota Bulo and Peter Kontschieder. 2020. Learning Multi-Object Tracking and Segmentation from Automatic Annotations. 33rd IEEE Conference on Computer Vision and Pattern Recognition.6845–6854.
Abstract: In this work we contribute a novel pipeline to automatically generate training data, and to improve over state-of-the-art multi-object tracking and segmentation (MOTS) methods. Our proposed track mining algorithm turns raw street-level videos into high-fidelity MOTS training data, is scalable and overcomes the need of expensive and time-consuming manual annotation approaches. We leverage state-of-the-art instance segmentation results in combination with optical flow predictions, also trained on automatically harvested training data. Our second major contribution is MOTSNet – a deep learning, tracking-by-detection architecture for MOTS – deploying a novel mask-pooling layer for improved object association over time. Training MOTSNet with our automatically extracted data leads to significantly improved sMOTSA scores on the novel KITTI MOTS dataset (+1.9%/+7.5% on cars/pedestrians), and MOTSNet improves by +4.1% over previously best methods on the MOTSChallenge dataset. Our most impressive finding is that we can improve over previous best-performing works, even in complete absence of manually annotated MOTS training data.
|
|
|
David Vazquez, Jiaolong Xu, Sebastian Ramos, Antonio Lopez and Daniel Ponsa. 2013. Weakly Supervised Automatic Annotation of Pedestrian Bounding Boxes. CVPR Workshop on Ground Truth – What is a good dataset?. IEEE, 706–711.
Abstract: Among the components of a pedestrian detector, its trained pedestrian classifier is crucial for achieving the desired performance. The initial task of the training process consists in collecting samples of pedestrians and background, which involves tiresome manual annotation of pedestrian bounding boxes (BBs). Thus, recent works have assessed the use of automatically collected samples from photo-realistic virtual worlds. However, learning from virtual-world samples and testing in real-world images may suffer the dataset shift problem. Accordingly, in this paper we assess an strategy to collect samples from the real world and retrain with them, thus avoiding the dataset shift, but in such a way that no BBs of real-world pedestrians have to be provided. In particular, we train a pedestrian classifier based on virtual-world samples (no human annotation required). Then, using such a classifier we collect pedestrian samples from real-world images by detection. After, a human oracle rejects the false detections efficiently (weak annotation). Finally, a new classifier is trained with the accepted detections. We show that this classifier is competitive with respect to the counterpart trained with samples collected by manually annotating hundreds of pedestrian BBs.
Keywords: Pedestrian Detection; Domain Adaptation
|
|
|
Jiaolong Xu, David Vazquez, Sebastian Ramos, Antonio Lopez and Daniel Ponsa. 2013. Adapting a Pedestrian Detector by Boosting LDA Exemplar Classifiers. CVPR Workshop on Ground Truth – What is a good dataset?.688–693.
Abstract: Training vision-based pedestrian detectors using synthetic datasets (virtual world) is a useful technique to collect automatically the training examples with their pixel-wise ground truth. However, as it is often the case, these detectors must operate in real-world images, experiencing a significant drop of their performance. In fact, this effect also occurs among different real-world datasets, i.e. detectors' accuracy drops when the training data (source domain) and the application scenario (target domain) have inherent differences. Therefore, in order to avoid this problem, it is required to adapt the detector trained with synthetic data to operate in the real-world scenario. In this paper, we propose a domain adaptation approach based on boosting LDA exemplar classifiers from both virtual and real worlds. We evaluate our proposal on multiple real-world pedestrian detection datasets. The results show that our method can efficiently adapt the exemplar classifiers from virtual to real world, avoiding drops in average precision over the 15%.
Keywords: Pedestrian Detection; Domain Adaptation
|
|
|
Cristhian A. Aguilera-Carrasco, F. Aguilera, Angel Sappa, C. Aguilera and Ricardo Toledo. 2016. Learning cross-spectral similarity measures with deep convolutional neural networks. 29th IEEE Conference on Computer Vision and Pattern Recognition Worshops.
Abstract: The simultaneous use of images from different spectracan be helpful to improve the performance of many computer vision tasks. The core idea behind the usage of crossspectral approaches is to take advantage of the strengths of each spectral band providing a richer representation of a scene, which cannot be obtained with just images from one spectral band. In this work we tackle the cross-spectral image similarity problem by using Convolutional Neural Networks (CNNs). We explore three different CNN architectures to compare the similarity of cross-spectral image patches. Specifically, we train each network with images from the visible and the near-infrared spectrum, and then test the result with two public cross-spectral datasets. Experimental results show that CNN approaches outperform the current state-of-art on both cross-spectral datasets. Additionally, our experiments show that some CNN architectures are capable of generalizing between different crossspectral domains.
|
|
|
Simon Jégou, Michal Drozdzal, David Vazquez, Adriana Romero and Yoshua Bengio. 2017. The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation. IEEE Conference on Computer Vision and Pattern Recognition Workshops.
Abstract: State-of-the-art approaches for semantic image segmentation are built on Convolutional Neural Networks (CNNs). The typical segmentation architecture is composed of (a) a downsampling path responsible for extracting coarse semantic features, followed by (b) an upsampling path trained to recover the input image resolution at the output of the model and, optionally, (c) a post-processing module (e.g. Conditional Random Fields) to refine the model predictions.
Recently, a new CNN architecture, Densely Connected Convolutional Networks (DenseNets), has shown excellent results on image classification tasks. The idea of DenseNets is based on the observation that if each layer is directly connected to every other layer in a feed-forward fashion then the network will be more accurate and easier to train.
In this paper, we extend DenseNets to deal with the problem of semantic segmentation. We achieve state-of-the-art results on urban scene benchmark datasets such as CamVid and Gatech, without any further post-processing module nor pretraining. Moreover, due to smart construction of the model, our approach has much less parameters than currently published best entries for these datasets.
Keywords: Semantic Segmentation
|
|
|
Patricia Suarez, Angel Sappa and Boris X. Vintimilla. 2017. Infrared Image Colorization based on a Triplet DCGAN Architecture. IEEE Conference on Computer Vision and Pattern Recognition Workshops.
Abstract: This paper proposes a novel approach for colorizing near infrared (NIR) images using Deep Convolutional Generative Adversarial Network (GAN) architectures. The proposed approach is based on the usage of a triplet model for learning each color channel independently, in a more homogeneous way. It allows a fast convergence during the training, obtaining a greater similarity between the given NIR image and the corresponding ground truth. The proposed approach has been evaluated with a large data set of NIR images and compared with a recent approach, which is also based on a GAN architecture but in this case all the
color channels are obtained at the same time.
|
|
|
Mohamed Ramzy Ibrahim, Robert Benavente, Felipe Lumbreras and Daniel Ponsa. 2022. 3DRRDB: Super Resolution of Multiple Remote Sensing Images using 3D Residual in Residual Dense Blocks. CVPR 2022 Workshop on IEEE Perception Beyond the Visible Spectrum workshop series (PBVS, 18th Edition).
Abstract: The rapid advancement of Deep Convolutional Neural Networks helped in solving many remote sensing problems, especially the problems of super-resolution. However, most state-of-the-art methods focus more on Single Image Super-Resolution neglecting Multi-Image Super-Resolution. In this work, a new proposed 3D Residual in Residual Dense Blocks model (3DRRDB) focuses on remote sensing Multi-Image Super-Resolution for two different single spectral bands. The proposed 3DRRDB model explores the idea of 3D convolution layers in deeply connected Dense Blocks and the effect of local and global residual connections with residual scaling in Multi-Image Super-Resolution. The model tested on the Proba-V challenge dataset shows a significant improvement above the current state-of-the-art models scoring a Corrected Peak Signal to Noise Ratio (cPSNR) of 48.79 dB and 50.83 dB for Near Infrared (NIR) and RED Bands respectively. Moreover, the proposed 3DRRDB model scores a Corrected Structural Similarity Index Measure (cSSIM) of 0.9865 and 0.9909 for NIR and RED bands respectively.
Keywords: Training; Solid modeling; Three-dimensional displays; PSNR; Convolution; Superresolution; Pattern recognition
|
|
|
Patricia Marquez, Debora Gil and Aura Hernandez-Sabate. 2013. Evaluation of the Capabilities of Confidence Measures for Assessing Optical Flow Quality. ICCV Workshop on Computer Vision in Vehicle Technology: From Earth to Mars.624–631.
Abstract: Assessing Optical Flow (OF) quality is essential for its further use in reliable decision support systems. The absence of ground truth in such situations leads to the computation of OF Confidence Measures (CM) obtained from either input or output data. A fair comparison across the capabilities of the different CM for bounding OF error is required in order to choose the best OF-CM pair for discarding points where OF computation is not reliable. This paper presents a statistical probabilistic framework for assessing the quality of a given CM. Our quality measure is given in terms of the percentage of pixels whose OF error bound can not be determined by CM values. We also provide statistical tools for the computation of CM values that ensures a given accuracy of the flow field.
|
|